IE 324 SIMULATION 2023-2024 SPRING DISCRETE EVENT SYSTEM SIMULATION BASICS

SIMULATION

Operating Policies

- Single queue, parallel servers, FIFO, ... Input Parameters
- Number of servers, distributions, ...

SIMULATION

- In this course we will focus on Discrete-event stochastic dynamic systems.
- The system is stochastic because at least one of the system state variables is random (o.w. deterministic simulation)
- The system is dynamic because system behavior over time is examined. (o.w. static systems - Monte Carlo simulation)
- The system is discrete-event because the changes in the system state variables are associated with events that occur at discrete time instances only.

COMPONENTS OF A SIMULATION MODEL

- STATE: A collection of variables that contain all information necessary to describe the status of a system at any given point in time.
- ACTIVITY: A duration of time of specified length that is known as it begins.
- Called "Unconditional Wait"
- It can be:
- Deterministic
- Statistical
- A function of system variables
- Ex: Inter-arrival times, service times...etc.
- DELAY: An indefinite duration of time that depends on activities or system conditions.
- Called "Conditional Wait"
- Ex: Waiting time in queue

COMPONENTS OF A SIMULATION MODEL

- All ACTIVITIES culminate with an EVENT.
- Since the duration of the activities are known in advance, an event notice is placed for an upcoming event is placed in a future event list (FEL) as the activity begins.
- Delays are not placed in the FEL.
- Every feasible event has one entry in the FEL.
- If an event becomes infeasible, it should be removed from the FEL.
- Ex: Machine breaks down (service completion is not going to happen at the scheduled time)

EXAMPLE: Queueing Systems

$\left[\begin{array}{c}\text { Finite vs. } \\ \text { Infinite }\end{array}\right] \quad\left[\begin{array}{c}\text { One line vs. } \\ \text { Multiple lines }\end{array}\right] \quad\left[\begin{array}{l}\text { One server vs. } \\ \text { multiple server }\end{array}\right)$

CHARACTERISTICS

- Interarrival and Service Times
- Exponential (M)
- Deterministic (D)
- Erlang (E)
- General (G)
- Queue discipline
- First Come/In First Served/Out (FCFS/FIFO)
- Last Come/In First Served/Out (LCFS/LIFO)
- Earliest Due Date (EDD)
- System Capacity
- Number of Servers

EXAMPLE

- Consider a bank teller queue with one teller (G/G/1) and FIFO queue discipline
- State Variables: Number of customers in queue Busy/Idle Status of Teller $(0,1)$
- Activities: Customer Inter Arrival

- Events: Customer Arrival Event

Customer Service
$\downarrow \downarrow$ Triggers
Customer Departure Event

- Delay: Waiting time in queue

EXAMPLE

EXAMPLE

- Customer 1 arrives at $t=t_{1}$
- If interarrivals are statistical with random variable X_{i}^{A} for customer i then the next Customer Arrival Event is scheduled at $t=t_{1}+X_{2}^{A}$
- Customer 1 enters service at $t=t_{2}$
- If service times are statistical with random variable X_{i}^{S} for customer i , then the next customer departure event is scheduled at $t=t_{2}+X_{1}^{S}$

COMPONENTS OF A SIMULATION MODEL

- We advance the system time t (called "Clock") one by one to each event in a chronological order as we make a simulation run.
- This is called "Event Driven Simulation"
- WHY?
- System state remains unchanged between events. (Nothing happens until the next event!)
- There is also an additional type of event called the "Ending Event" that represents the time to stop the simulation run. We add this event to the FEL when simulation run starts ($\mathrm{E}, \mathrm{T}_{\mathrm{E}}$).
- Note that, for now interarrival and service times are generated randomly for us.

EXAMPLE (Cont’d)

- What if there were two servers? (G/G/2)
- We will have two "Customer Service" activities each triggering a separate "Customer Departure Event" in the FEL.

COMPUTATION OF STATISTICS

- As a result of a simulation run, we need to obtain statistical information about a performance measure of interest.
- Average Waiting Time
- Maximum Waiting Time
- Average Number of Entities in the System
- Maximum Number of Entities in the System
- Server Utilization
- Average System Time
- Maximum System Time
- We need to keep track of some more variables to capture the performance measure we wish to investigate.

COMPUTATION OF STATISTICS

- P: Total number of customers served so far (\# left the system)
- N : Total number of customers passed through the queue
- $\Sigma W Q$: Sum of queue times observed so far
- $W Q^{*}$: Maximum queue time observed so far
- $\Sigma T S$: Sum of system times observed so far
- TS*: Max system time observed so far $\left\{\begin{array}{l}\text { Updated whenever a } \\ \text { customer leaves the } \\ \text { system }\end{array}\right.$

COMPUTATION OF STATISTICS

- $Q(t)$: Function of number of customers waiting in queue (state var.)

$$
Q(t) \in\{0,1,2, \ldots\}
$$

- $B(t)$: Server busy function (state var.)

$$
B(t) \in\{0,1\}
$$

- $L(t)=Q(t)+B(t)$

COMPUTATION OF STATISTICS

- Using these variables, we can find:
- Average Waiting Time (In Queue): $\frac{\Sigma W Q}{N}$ (Tally)
- Average System (Total) Time: $\frac{\Sigma T S}{P}$ (Tally)
- Average Number of Customers In Queue: $\frac{\int Q(t)}{T_{E}}$ (Time-persistent)
- Server Utilization: $\frac{\int B(t)}{T_{E}}$ (Time-persistent)
- Note that additional variables are needed if further statistical outputs are needed:
- Maximum idle time, maximum queue length...

TOWARDS MAKING A SIMUATION RUN

- Now that we know how to advance simulation time, keep track of events and collect statistics, we will now see how to analyze a G/G/1 queue system.

Arrival Event Flowchart (Logical Model)

Set service time \& schedule departure

Departure Event Flowchart (Logical Model)

Simulation by Hand

$t=0.00$, Initialize

System	Clock 0.00	$\begin{aligned} & B(t) \\ & 0 \end{aligned}$	$Q(t)$ 0	Arrival times (Q) S ()	$\begin{array}{\|l} \hline \text { Event calendar } \\ {[1,} \\ {\left[\begin{array}{ll} \text { 0.00,Arr }] \end{array}\right.} \\ {[-, 20.00, \quad \text { End }]} \end{array}$
$\begin{array}{\|l} \hline \mathrm{N}: 0 \\ \mathrm{P}: 0 \end{array}$	$\begin{aligned} & \Sigma \mathrm{\Sigma} \text { WQ: } 0.00 \\ & \Sigma \mathrm{TS}: 0.00 \\ & \text { WQ }^{*}: 0.00 \\ & \text { TS }^{*}: 0.00 \end{aligned}$			Area under Area under $Q(t)$ $B(t)$ 0.00 0.00	
$Q(t)$ graph					
$B(t)$ graph					
Interarrival times	$1.73,1.35,0.71,0.62,14.28,0.70,15.52,3.15,1.76,1.00, \ldots$				
Service times	2.90, 1.76, 3.39, 4.52, 4.46, 4.36, 2.07, 3.36, 2.37, 5.38, ..				

$t=0.00$, Arrival of Part 1

$t=1.73$, Arrival of Part 2

Bilkent University - IE 324 Simulation

$t=2.90$, Departure of Part 1

Bilkent University - IE 324 Simulation

$t=3.08$, Arrival of Part 3

$t=3.79$, Arrival of Part 4

$t=4.41$, Arrival of Part 5

$t=4.66$ ，Departure of Part 2

System 4	Clock 4.66	$\begin{aligned} & B(t) \\ & 1 \end{aligned}$	$Q(t)$ 2		$\begin{array}{r} \hline \text { Arrival times (Q) S } \\ (4.41,3.79) 3.08 \end{array}$	Event calen $[3$, $\left[\begin{array}{ll}8.05, \\ {[6,} & 18.69, \\ {[-,} & 20.00,\end{array}\right.$	Dep］ Arr］ End］
$\begin{aligned} & \mathrm{N}: 3 \\ & \mathrm{P}: 2 \end{aligned}$	$\begin{aligned} & \text { £ WQ: } 2.75 \\ & \Sigma \text { TS: } 5.83 \\ & \text { WQ*: }^{*} .58 \\ & \text { TS*: }^{*}: 2.93 \end{aligned}$			Area under Area under $B(t)$ 3.87 4.66			
$Q(t)$ graph							
$B(t)$ graph							
Interarrival times	1．73，135，0ユ⿱卄一，0，82，1428， $0.70,15.52,3.15,1.76,1.00, \ldots$						
Service times	280，1．76，3．39，4．52，4．46，4．36，2．07，3．36，2．37，5．38，．．．						

Bilkent University－IE 324 Simulation

$t=8.05$, Departure of Part 3

Bilkent University - IE 324 Simulation

$t=12.57$, Departure of Part 4

System $\quad 3$	Clock 12.57	$B(t)$ 1	$\begin{aligned} & Q(t) \\ & 0 \end{aligned}$		$\begin{array}{r} \text { Arrival times (Q) S } \\ \text { () } 4.41 \end{array}$	Event calen $[5$, $[6$, $[6$, $[-$,	Dep] Arr] End]
$\begin{aligned} & \mathrm{N}: 5 \\ & \mathrm{P}: 4 \end{aligned}$				Area under $Q(t)$$15.17$		Area under $B(t)$ 12.57	
$Q(t)$ graph							
$B(t)$ graph							
Interarrival times	$1.73,1.35,0.71,0.62,14.28,0.70,15.52,3.15,1.76,1.00, \ldots$						
Service times	$2.90,1.70,3.39,4.52,4.46,4.36,2.07,3.36,2.37,5.38, \ldots$						

Bilkent University - IE 324 Simulation

$t=17.03$, Departure of Part 5

System	$\begin{aligned} & \text { Clock } \\ & 17.03 \end{aligned}$	$B(t)$ 0	$\begin{aligned} & Q(t) \\ & 0 \end{aligned}$		Arrival times (Q) S	$\begin{aligned} & \text { Event cale } \\ & {[6,} \\ & {\left[\begin{array}{ll} 18.69 \\ {[-,} & 20.00 \end{array}\right.} \end{aligned}$	Arr] End]
$\begin{aligned} & \mathrm{N}: 5 \\ & \mathrm{P}: 5 \end{aligned}$	£ WQ: 15.17Σ TS: 32.20WQ*: $^{*}: 8.16$TS*: 12.62			Area under Area under $Q(t)$ $B(t)$ 15.17 17.03			
$Q(t)$ graph							
$B(t)$ graph							
Interarrival times	$173,1 \not 25,0$ 人1, 0.82, 14.28, $0.70,15.52,3.15,1.76,1.00, \ldots$						
Service times	2.96, 1.76, 329, 4.82, 446, 4.36, 2.07, 3.36, 2.37, 5.38, ..						

$t=18.69$, Arrival of Part 6

System	Clock 18.69	$B(t)$ 1	$Q(t)$ 0		$\begin{array}{r} \hline \text { Arrival times }(Q) \text { S } \\ \text { () } 18.69 \end{array}$	$\begin{aligned} & \text { Event calen } \\ & {[7,} \\ & {\left[\begin{array}{l} 19.39, \end{array}\right.} \\ & {[-,} \\ & {[6,} \\ & 20.00,05, \end{aligned}$	Arr] End] Dep]
$\begin{aligned} & \mathrm{N}: 6 \\ & \mathrm{P}: 5 \end{aligned}$				Area under Area under $Q(t)$ $B(t)$ 15.17 17.03			
$Q(t)$ graph							
$B(t)$ graph							
Interarrival times							
Service times	280, 176, 3ユ9, 456, 446, 4З6, 2.07, 3.36, 2.37, 5.38, ...						

Bilkent University - IE 324 Simulation

$t=19.39$, Arrival of Part 7

Bilkent University - IE 324 Simulation

$t=20.00$, The End

System	$\begin{aligned} & \text { Clock } \\ & 20.00 \end{aligned}$	$B(t)$ 1	$Q(t)$ 1		$\begin{array}{r} \hline \text { Arrival times }(Q) \text { S } \\ \text { (19.39) } 18.69 \end{array}$	$\begin{aligned} & \text { Event calen } \\ & {[6,} \\ & {[8,} \\ & {[8.05,} \\ & \hline 8, \end{aligned}$	Dep] Arr]
$\begin{aligned} & \mathrm{N}: 6 \\ & \mathrm{P}: 5 \end{aligned}$	$\begin{aligned} & \sum \text { WQ: } 15.17 \\ & \Sigma \mathrm{TS}: 32.20 \\ & \text { WQ*: }^{*} 8.16 \\ & \text { TS*: }^{*} 12.62 \end{aligned}$			Area under$Q(t)$$15.78$		Area under$B(t)$$18.34$	
$Q(t)$ graph							
$B(t)$ graph							
Interarrival times	1.73, 1.35, 0.71, 0.62, 14.28, 0.70, 15.52, 3.15, 1.76, 1.00, ..						
Service times	2.90, 1.76, 3.39, 4.52, 4.46, 4.36, 2.07, 3.36, 2.37, 5.38, ..						

Bilkent University - IE 324 Simulation

Complete Record of Hand Simulation

Just-Finished Event			Variables				Statistical Accumulators									Event Calendar		
$\begin{array}{\|c\|} \hline \text { Entity } \\ \text { No. } \\ \hline \end{array}$	$\begin{gathered} \text { Time } \\ t \\ \hline \end{gathered}$	$\begin{gathered} \text { Event } \\ \text { Type } \\ \hline \end{gathered}$	$Q(t)$	$B(t)$	AttributesArrival Times:(In Queue) In Service		P	N	$\Sigma_{W O}$	WO*	$\Sigma_{T S}$	$T S^{*}$	\int_{Q}	O^{*}	\int_{B}	[Entity No., Time, Type]		
-	0.00	Init	0	0	()	-	0	0	0.00	0.00	0.00	0.00	0.00	0	0.00	$\begin{aligned} & {[1,} \\ & {[-,} \end{aligned}$	$\begin{array}{r} 0.00 \\ 20.00 \end{array}$	A ri] End]
1	0.00	Arr	0	1	()	0.00	0	1	0.00	0.00	0.00	0.00	0.00	0	0.00	[2, [1, [1-,	$\begin{array}{r} 1.73, \\ 2.90, \\ 20.00, \\ \hline \end{array}$	$\begin{gathered} \text { Arr] } \\ \text { Depl } \\ \text { End } \\ \hline \end{gathered}$
2	1.73	Arr	1	1	(1.73)	0.00	0	1	0.00	0.00	0.00	0.00	0.00	1	1.73	$\begin{aligned} & {[1,} \\ & {[3,} \\ & {[-.} \end{aligned}$	$\begin{array}{r} 2.90, \\ 3.08, \\ 20.00 \\ \hline \end{array}$	$\begin{gathered} \text { Depl } \\ \text { Arr] } \\ \text { End } \\ \hline \end{gathered}$
1	2.90	Dep	0	1	()	1.73	1	2	1.17	1.17	2.90	2.90	1.17	1	2.90	$\begin{aligned} & {[3,} \\ & {[2,} \\ & {[-} \end{aligned}$		$\begin{array}{r} \text { Arr] } \\ \text { Dep] } \\ \text { End } \\ \hline \end{array}$
3	3.08	Arr	1	1	(3.08)	1.73	1	2	1.17	1.17	2.90	2.90	1.17	1	3.08	[4, [2, [-,	$\begin{array}{r} 3.79, \\ 4.66, \\ 20.00, \end{array}$	A rr] Dep] End]
4	3.79	Arr	2	1	(3.79, 3.08)	1.73	1	2	1.17	1.17	2.90	2.90	1.88	2	3.79	$\begin{aligned} & {[5,} \\ & {[2,} \\ & {[-,} \end{aligned}$	$\begin{array}{r} 4.41, \\ 4.66, \\ 20.00, \\ \hline \end{array}$	A rr] Dep] End]
5	4.41	Arr	3	1	(4.41, 3.79, 3.08)	1.73	1	2	1.17	1.17	2.90	2.90	3.12	3	4.41	$\begin{aligned} & {[2,} \\ & {[6,} \\ & {[-,} \end{aligned}$	4.66, 18.69, 20.00,	$\begin{gathered} \text { Dep] } \\ \text { Arr] } \\ \text { End] } \\ \hline \end{gathered}$
2	4.66	Dep	2	1	(4.41, 3.79)	3.08	2	3	2.75	1.58	5.83	2.93	3.87	3	4.66	$\begin{aligned} & {[3,} \\ & {[6,} \\ & {[-,} \end{aligned}$		$\begin{gathered} \text { Dep] } \\ \text { Arr] } \\ \text { End } \\ \hline \end{gathered}$
3	8.05	Dep	1	1	(4.41)	3.79	3	4	7.01	4.26	10.80	4.97	10.65	3	8.05	[4, [6, \qquad	$\begin{aligned} & 12.57, \\ & 18.69, \\ & 20.00, \end{aligned}$	$\begin{gathered} \text { Dep] } \\ \text { Arr] } \\ \text { End] } \\ \hline \end{gathered}$
4	12.57	Dep	0	1	()	4.41	4	5	15.17	8.16	19.58	8.78	15.17	3	12.57	$\begin{aligned} & {[5,} \\ & {[6,} \\ & {[-,} \end{aligned}$	$\begin{aligned} & 17.03, \\ & 18.69, \\ & 20.00, \end{aligned}$	$\begin{gathered} \text { Dep] } \\ \text { Arr] } \\ \text { End } \\ \hline \end{gathered}$
5	17.03	Dep	0	0	()	-	5	5	15.17	8.16	32.20	12.62	15.17	3	17.03	$\begin{aligned} & {[6,} \\ & {[-,} \end{aligned}$	$\begin{gathered} 18.69, \\ 20.00 \\ \hline \end{gathered}$	$\begin{gathered} \text { Arr] } \\ \text { End } \\ \hline \end{gathered}$
6	18.69	Arr	0	1	()	18.69	5	6	15.17	8.16	32.20	12.62	15.17	3	17.03	$[7$ $[-,$ $\sqrt{6}$		A rr] End] Dep]
7	19.39	Arr	1	1	(19.39)	18.69	5	6	15.17	8.16	32.20	12.62	15.17	3	17.73	$\begin{aligned} & {[-,} \\ & {[6,} \\ & {[8,} \end{aligned}$	$\begin{aligned} & 20.00, \\ & 23.05, \\ & 34.91, \end{aligned}$	End] Dep] Arr]
-	20.00	End	1	1	(19.39)	18.69	5	6	15.17	8.16	32.20	12.62	15.78	3	18.34	$\begin{aligned} & {[6,} \\ & {[8,} \end{aligned}$	$\begin{aligned} & 23.05, \\ & 34.91, \\ & \hline \end{aligned}$	$\begin{gathered} \text { Dep] } \\ \mathrm{Arr}] \\ \hline \end{gathered}$

Bilkent University - IE 324 Simulation

Bilkent University - IE 324 Simulation

