
Tutorial: Introduction to Modeling in Xpress MP

This is an introductory tutorial for modeling in Xpress MP using the Xpress IVE environment. Basic

modeling practices in Xpress MP are introduced via Model examples.

Xpress student version can be downloaded free of charge at:

http://optimization.fico.com/student-version-of-fico-xpress.html.

Run the XpressIVE program, the graphical user interface for coding, debugging and running XPress MP

files.

From the “Project” menu select “New” and name the new project.

Add a new file named “simple.mos” by selecting “File->New”.

Example 1: A Simple Two Decision Variable Linear Programming Model

Enter the following code:

which solves the linear programming problem:

maximize a + 2b

subject to 3a + 3b ≤ 400

 a + 3b ≤ 200

 a, b ≥ 0.

Compile and run by selecting “Build->Compile” followed by “Build->Run” from the menu bar.

http://optimization.fico.com/student-version-of-fico-xpress.html

Remarks:

- The exclamation mark “!” is the character reserved for comments. It can be used in the beginning of a

line to enter a single line comment, or it can be used after a line of command to append a comment

besides the command.

- Between “(!” and “!)” character pairs, a comment spanning multiple lines can be entered.

- Whether the comment marks are used or not, beyond the end-model command is not interpreted by the

compiler and this part of the file can be used for comments/notes.

- In Xpress MP, there are no specific marks at the end of command lines, the end of a command line is

decided by the completion of the statement. A statement is assumed to be complete at the end of a line,

unless the line ends at a point such that the compiler expects further input. For instance, if a statement

consists of many terms added to each other, and there is a “+” sign at the end of the line, then the

compiler expects the next term to be added in the beginning of the following line.

- Modeling in Xpress is made in blocks. The outermost block is the model block, between the “model”

and “end-model” commands. Similar to grouping a block of statements between a pair of curly brackets

in Java or C++, a block of commands in Xpress MP is formed by grouping in between the pair of

statements “blockname”/“end-blockname”, such as “model”/”end-model”. One such block that is

especially important is the “do”/”end-do” block. Unless a group of command lines following a loop

statement (e.g. “forall”, “while”) is inserted between the pair “do”/”end-do”, they are not executed as a

block. In this case only the first command following the loop statement is executed inside the loop.

Execution continues with the remaining lines after exiting the loop.

- Xpress libraries that are necessary for the compilation and solution of the model file are recalled by the

“uses” command. For optimization of mathematical programming problems, it is necessary to recall the

“mmxprs” library.

- Linear/mathematical programming decision variables are declared in the declarations block between the

“declarations” and “end-declarations” commands. Decision variables are declared to be of the type

“mpvar”.

- It is a good practice to name constraints, equations/inequalities and other expressions. Observe that the

model remains unchanged removing “first :=” and “second :=” assignments from the constraint

definitions. However, when investigating the solution of the model, such as retrieving values of the

expressions or doing sensitivity analysis, these names are necessary for for referring to the expressions.

- The example has upperbound inequality type (“≤”) constraints. Lower bound inequality (“≥”) and

equality (“=”) type constraints can be modeled with a similar syntax, “>=” and “=”, respectively.

- The expression for the objective function is named as “profit”. The direction of optimization (“the

optimization sense”) is to “maximize” the objective function. Similarly, there is a “minimize” function.

Compile and run the file again minimizing profit to observe that the decision variables are nonnegative by

default.

- “write” and “writeln” functions are used for displaying output in the standard output window of

XpressIVE. “write” and “writeln” functions can receive multiple arguments separated by commas. The

arguments can be of various types such as string (characters between double quotes), integer, real, etc.

- The “write” function accepts newline (“\n”) and tab (“\t”) characters for indenting and organizing the

output. If it is necessary to output backslash (\) or double quote (“) characters, a backslash character is

placed before these characters: “\\text between backslash characters\\”, “\”text in double quotes\””.

“writeln” works in the same manner, except that it skips to a new line after outputting the function

arguments.

- The objective value and values of the decision variables are retrieved by “getobjval” and “getsol()”

functions, respectively.

Example 2: Modeling Using Arrays, Separating Model and Data Files

In this section there are six Xpress models that solve the same linear programming problem formulated as

below:

minimize -10x1 - 12x2 - 12x3

subject to x1 + 2x2 + 2x3 ≤ 20

 2x1 + x2 + 2x3 ≤ 20

 2x1 + 2x2 + x3 ≤ 20

 x1, x2, x3 ≥ 0.

With each new example, different capabilities of the Xpress MP modeling environment is introduced.

Example 2.1 Basic Types and Mathematical Programming Types, Assigning Values

- In the declarations block of the model example2_1, the types of the declarted entities are defined. Four

basic entity types are:

• integer: an integer value between -214783648 and 2147483647,

• real: a rational number with value between -1.7e+308 and 1.7e+308,

• string: text in double quotes,

• boolean: the result of a Boolean (logical) expression. takes values false or true.

After declaration, basic entities receive default values 0, empty string, or false depending on type.

-Two mathematical programming types are:

• mpvar: a decision variable,

• linctr: a linear constraint of the model.

The linear constraint type linctr stores expressions of linear functions of the variables (c1*x1 + c2*x2 +

c3*x3, as in the objective function obj_fnc) besides entire inequalities and equalities that form the

constraints (such as c1*x1+c2*x2+c3*x3 ≤ d).

- Basic types and mathematical programming types (mp types) together are called elementary types.

- “:” is used for declarations and “:=” is used for assigning value for a single entity of basic type.

Example 2.2 Arrays, Summing Over an Index

- Elementary type entities can be used to buid more complex data structures such as array and sets. Sets

will be defined in Example 2.5.

- Note the syntax “arrayname: array(range/set) of entitytype” for array declaration.

- “::” is used for assignment of the values for the entire array. The values assigned are formed into a list

inside square brackets, separated by commas. Note that the syntax works in the same manner when

assigning into the array of linctr, linear constraint type.

- Arrays are defined using ranges or sets. 1..3 is a range, a structure that consists of numbers 1, 2, and 3 in

order. The array defined by the range 1..3 has size 3, and its elements are referred by the elements of the

range. a2(2) returns the second element of the array a2, which is 1. If another array was declared as:

a4: array(3..7) of real,

and defined as:

 a4 :: [13, 14, 15, 16, 17],

then a4(5) would return 15.

- When an index that is not in the defining range or set is referred in an array, such as calling a3(4) or

a4(1), this results in a run time error, although the model compiles successfully.

- The “sum” operator is useful for making iterative calculations, or forming expressions iteratively. The

operator iterates over ranges or sets, by defining an index iterator inside the range or set.

- The scope of the sum operator covers the first expression following the operator. This expression may

contain multiplication and division operators. If the expression contains an additon or subtraction

operator, the expression has to be placed inside parantheses.

Example 2.3 Multi-dimensional Arrays, The Forall Loop

- The Xpress MP modeling environment allows definition of multi-dimensional arrays. An array is

defined by a list of ranges and sets, each defining the size of the array and the iterators for indexing in the

corresponding dimension. For instance, a 5 dimensional array of size 3 x |set1| x 5 x |set2| x |set3| can be

declared as:

 multi_dim_array_1: array(1..3,set1,1..5,set2,set3) of real.

The elements of the arrays are referred as multi_dim_array1(i1,i2,i3,i4,i5), where i1, ..., i5 have to be

elements of the corresponding sets and ranges.

- When assigning onto arrays, a linear list is acceptable, as a single line list is assigned into the 2

dimensional array A in the above model. A is filled row by row in this case. This can be done similarly

for arrays of higher dimension. When assigning a linear list onto an array of higher dimension, the

rightmost index iterator is the fastest changing and the leftmost iterator is the slowest changing.

- “forall” is the for loop syntax, that iterates over indexes in a range or set. If multiple lines are to be

executed inside the for loop, these lines are grouped inside the “do/end-do” block.

- Similar to the way multi-dimensional arrays are defined, nested forall blocks and sums are possible. For

instance, forall(i1 in 1..3, i2 in set1, i3 in 1..5, i4 in set2, i5 in set3) makes a nested forall loop of depth 5,

where i1 is the iterator of the outermost forall loop i5 is that of the innermost.

- Note the definition of the problem dimension n. A single entity of basic type can be assigned a value

without declaration. The regular assignment syntax “:=” is used.

- For assignment to a single entry of an array, again the “:=” syntax is used. Assignment to the entries of

the constr array is made one by one in this way.

Example 2.4 Separating Model and Data: Data Input from File, Multiple Blocks of One Type

- A file named “example2_4.dat” in the same folder with the model file should contain data for A, b and c

arrays as follows:

!Data File for example2_4 and example2_5

A: [1 2 2 2 1 1 2 2 1]

b: [20 20 20]

c: [10 12 12]

n: 3

Note that only single colons (“:”) are used for the definition of data instead of the assignment syntax in

model files (“:=” or “::”), and there are no commas in the lists between data entries.

- The above model file examples that a block type can occur multiple times in the model. In this model

there are two declaration and two initialization blocks. First, n is declared and initialized from the data

file, based on which the declarations of the other data structures are made.

- An entity has to be declared to be initialized from a file, thus n was first declared in the model file

before initialization. This way, the size of the data sought in the data file is known by the environment.

Example 2.5 Sets for Indexing Arrays, Model Solution Time, Number of Simplex Iterations

- This model is an example for indexing arrays over sets. A set is defined by a list of entities inside curly

brackets, with entities separated by commas. Sets sweets and ingredients are defined in the declarations

block in the above model, where the assignments are done by equality signs without colons (“=”).

Alternatively, it is possible to define the same sets before, outside the declarations block, in that case

using the “:=” syntax.

- Iterating over sets, and assignments to arrays defined by sets is done in the same manner they are done

in the case ranges are used.

- If an index that is not inside the defining set is used for reference to an array element, there is no

compilation error, but a run time error is encountered. b(“salt”) would result in a run time error. Although

sweets and ingredients sets have the same size, iterating over the sweets set would again cause a run time

error if reference to the b array is made using the iterator.

- Notice that there is no indexing in the data file, therefore it is possible to use the same data file for two

models that do the indexing by ranges and sets, or that have sets with different elements for indexing.

- Although the data file contains additional information such as that for n, in initializaiton it is possible to

pick and retrieve only the data necessary for the model.

- The getparam function with argument “SIMPLEX_ITER” returns the number of simplex iterations

made to solve the LP model.

- It is possible to calculate the time it takes for Xpress to solve the problem by recording the time before

and after the minimize/maximize command, which starts the optimization process. The function gettime is

used for recording the time, which returns the time that has passed after the execution of the compiled

model. For using the gettime function, it is necessary to recall the “mmsystem” library.

Example 2.6 Initializing Index Sets from File, Sensitivity Analysis

- In this model, there is another example to the usage of multiple declaration and initializaiton blocks, to

read the data for the index sets sweets and ingredients before declaring the arrays based on these sets.

- The getrange and getsensrng function is used to retrieve the sensitivity analysis information on

variables/cost coefficients and constraints/right hand side coefficients. Based on the argument entered to

the getrange and getsensrng functions, different sensitivity information about the variables and

constraints is retrieved as indicated in the tables below.

getrange(w, x or c)

w Which information to return. Possible values:

XPRS_UPACT Upper activity

XPRS_LOACT Lower activity

XPRS_UUP Upper unit cost

XPRS_UDN Lower unit cost

XPRS_UCOST Upper cost (variable only)

XPRS_LCOST Lower cost (variable only)

x A variable of the problem

c A constraint of the problem

getsensrng(w, x or c)

w Which information to return. Possible values:

XPRS_UP Upper sensivity range

XPRS_DN Lower sensivity range

x A variable of the problem

c A constraint of the problem

Example 3.1 Integer Programming, Number of Nodes Generated for IP/MIP Solution

!Data File for example3_1 and example3_2

sweets: ["mosaic cake" "chocolate muffin" "chocolate cookie"]

ingredients: ["flour" "sugar" "cocoa"]

A: [1 2 2 2 1 1 2 2 1]

b: [20 20 20]

c: [10 12 12]

- After the declaration, an mp variable is continuous by default. This can be changed using the is_integer

and is_binary keywords, defining the variable as an integer or binary variable.

- In this model all variables are defined to be binary, exploting the forall loop.

- The getparam function called with the argument “XPRS_NODES” returns the number of nodes

generated by the Branch and Bound algorithm for the solution of a (mixed) integer programming

problem.

Example 3.2 Mixed Integer Programming, Random Data Generation, Data Output

- In this example, a mixed integer program is modeled, where x(1) is a continuous variable, x(2) is an

integer variable, and x(3) is a binary variable.

- The random function returns a random number from the uniform distribution in [0,1]. Multiplication of

the returned number with a (positive) constant r, followed by the addition of another constant m gives a

random number from a uniform distribution in [m, m + r].

- If necessary, the seed of the random number generator can be set by the setrandseed() function, taking

as argument the integer which will be the new seed value.

- Outputting to data files works in a similar way to data initialization from files. Again an initialization

block is formed, but it begins with “initializations to”, instead of “from”. A good practice is to give the

same name to the output file as the model file, with the extension “.out”. Note that it is necessary to store

variable values in data structures of basic entity types, before outputting to the data file.

For further reading on modeling techniques in Xpress MP, see the Getting Started Guide and Reference

Manual in:

http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Documentation.aspx .

http://www.fico.com/en/Products/DMTools/xpress-overview/Pages/Xpress-Documentation.aspx

