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Simplex for min Problems
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Simplex for min Problems

Alternative 1: Use the algorithm for max problems

Remember,

minimize z = 2x1 - 3x2

subject to

x1 + x2 ≤ 4

x1 - x2 ≤ 6

x1, x2 ≥ 0

-maximize z = -2x1 + 3x2

subject to

x1 + x2 ≤ 4

x1 - x2 ≤ 6

x1, x2 ≥ 0

≡
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≡ - max - f(𝑥1, 𝑥2, …, 𝑥𝑛)             min f(𝑥1, 𝑥2, …, 𝑥𝑛)             

Don’t forget to negate the optimal value when you solve it as 

max problem!



Simplex for min Problems

Alternative 2: Direct way

In Row 0 format, choose the variable with the most

positive coefficent as the entering variable. 
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Alternate Optimal Solutions
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An Example*
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*from our textbook: “Operations Research: Applications and Algorithms” by Wayne Winston



Model
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Simplex Iterations
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Alternate Optimal Solutions

Now, reconsider the example with the modification that tables sell for $35 instead of $30.
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Alternate Optimal Solutions
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Remember,
change in objective value=|coefficient of entering variable| * ratio test result



Alternate Optimal Solutions

Note that their convex combinations are also optimal.
x1 x2 x3 ObjFnVal

ObjCoeff 60 35 20 -

opt1 2.00 0.00 8.00 280

opt2 0.00 1.60 11.20 280

lambda ObjFnVal

0.0 0.00 1.60 11.20 280

0.1 0.20 1.44 10.88 280

0.2 0.40 1.28 10.56 280

0.3 0.60 1.12 10.24 280

0.4 0.80 0.96 9.92 280

0.5 1.00 0.80 9.60 280

0.6 1.20 0.64 9.28 280

0.7 1.40 0.48 8.96 280

0.8 1.60 0.32 8.64 280

0.9 1.80 0.16 8.32 280

1.0 2.00 0.00 8.00 280

Convex Combinations
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- In Simplex algorithm, alternative solutions are 

detected when there are 0 valued coefficients for 

nonbasic variables in row-0 of the optimal tableau.

- If there is no nonbasic variable with a zero coefficient 

in row 0 of the optimal tableau, the LP has a unique 

optimal solution.  

- Even if there is a nonbasic variable with a zero 

coefficient in row 0 of the optimal tableau, it is possible 

that the LP may not have alternative optimal solutions.

Alternate Optimal Solutions - Remark
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Alternate Optimal Solutions

Practice example:

maximize z = 2x1 + 4x2

subject to

x1 + 2x2 ≤ 5

x1 + x2 ≤ 4

x1, x2 ≥ 0



Alternate Optimal Solutions

Practice example:

maximize z = 2x1 + 4x2

subject to

x1 + 2x2 ≤ 5

x1 + x2 ≤ 4

x1, x2 ≥ 0

Set of alternate optimal solutions=

𝑥1
𝑥2
𝑠1
𝑠2

:

𝑥1
𝑥2
𝑠1
𝑠2

=𝜆

0
5

2
0
3

2

+(1−𝜆)

3
1
0
0

𝑤ℎ𝑒𝑟𝑒 𝜆 ∈ [0,1]



Unboundedness
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Unbounded LPs

For some LPs, there exist points in the feasible region for 

which z assumes arbitrarily large (in max problems) or 

arbitrarily small (in min problems) values.  When this 

occurs, we say the LP is unbounded.

Consider the following LP:

maximize z = x1 + 2x2

subject to

x1 – x2 ≤ 10 

x1 ≤ 40

x1, x2 ≥ 0

17



Unbounded LPs

Practice Example: 

In standard form:

maximize z = x1 + 2x2

subject to

x1 – x2 + s1 = 10 

x1 + s2 = 40

x1, x2, s1, s2 ≥ 0

Apply Simplex Method. 

Consider x1 = 0; s2 = 40; x2 = a; s1 = 10+a.

The objective function value is then 2a for any a ϵ ℝ+.
18



Unbounded LPs

• An unbounded LP occurs in a max (min) problem if there 

is a nonbasic variable with a negative (positive) coefficient 

in row 0 and there is no constraint that limits how large we 

can make this nonbasic variable.

• Specifically, an unbounded LP for a max (min) problem 

occurs when a variable with a negative (positive) 

coefficient in row 0 has a non positive coefficient in each 

constraint.

There is an entering variable but no leaving variable, since 

ratio test does not give a finite bound!
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Degeneracy
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Degeneracy

• An LP is a degenerate LP if in a basic feasible solution, one 
of the basic variables takes on a zero value. This bfs is 
called degenerate bfs.

• Degeneracy could cost simplex method extra iterations.

• When degeneracy occurs, obj fn value will not increase.

• A cycle in the simplex method is a sequence of K+1 
iterations with corresponding bases B0, …, BK, B0 and K≥1.

• If cycling occurs, then the algorithm will loop, or cycle, 
forever among a set of basic feasible solutions and never 
get to an optimal solution.
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Example of Cycling

*Lecture 13 by Prof. David P. Williamson of Cornell Uni. ORIE Dept.



• Consider the following example*:

Degeneracy

23
*from our textbook: “Operations Research: Applications and Algorithms” by Wayne Winston



Degeneracy

Iteration-1

Iteration-2
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• In the simplex algorithm, degeneracy is detected when there 
is a tie for the minimum ratio test. In the following iteration, 
the solution is degenerate.

• Example (for practice):

maximize z = 3x1 + 9x2

subject to

x1 + 4x2 ≤ 8

x1 + 2x2 ≤ 4

x1, x2 ≥ 0

Degeneracy
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• When degeneracy occurs, obj fn value will not increase and 
algorithm cycles same basic feasible solutions. To prevent this:

• Bland showed that cycling can be avoided by applying the 
following rules (assume that the slack and excess variables are 
numbered xn+1, xn+2 etc.) 

• Choose an entering variable (in a max problem) the variable 
with a negative coefficient in row 0 that has the smallest index

• If there is a tie in the ratio test, then break the tie by choosing 
the winner of the ratio test so that the variable leaving the 
basis has the smallest index

• Using Bland’s rule, the Simplex Algorithm terminates in finite 
time with optimal solution (i.e. no cycling)

Start Applying Bland’s rule when a degenerate bfs is encountered

Degeneracy – Bland’s Rule
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Big-M Method

Alternative 1 for finding and initial bfs.
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Big M Method

• The simplex method algorithm requires a 
starting bfs.  

• Previous problems have found starting bfs by 
using the slack variables as our basic variables.

– If an LP has ≥ or = constraints, however, a starting 
bfs may not be readily apparent.  

• In such a case, the Big M method may be used 
to solve the problem.
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Big M Method

• Consider the following LP:

minimize     z = 2x1 + 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0
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Big M Method

• Consider the following LP:

minimize     z = 2x1 + 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

30

- maximize    z = - 2x1 - 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

≡



Big M Method

• The LP in standard form has z and s1 which could be used for BVs but row 2 
would violate sign restrictions and row 3 no readily apparent basic 
variable.

• In order to use the simplex method, a bfs is needed.

– To remedy the predicament, artificial variables are created.  

– The variables will be labeled according to the row in which they are used.

Row 0: z +  2x1 +     3x2 = 0

Row 1:      0.5x1 + 0.25x2 + s1 =  4

Row 2:           x1 +      3x2 - e2 = 20

Row 3:           x1 +        x2 = 10
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Big M Method

• In the optimal solution, all artificial variables must be set 
equal to zero.  

– To accomplish this, in a min LP, a term Mai is added to 
the objective function for each artificial variable ai.

– For a max LP, the term –Mai is added to the objective 
function for each ai.  

– M represents some very large number.  

Row 0: z +  2x1 +     3x2 = 0

Row 1:      0.5x1 + 0.25x2 + s1 =  4

Row 2:           x1 +      3x2 - e2 + a2 = 20

Row 3:           x1 +        x2 + a3 = 10
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Big M Method

• The modified LP in standard form then becomes:

• Modifying the objective function this way makes it extremely 
costly for an artificial variable to be positive.  The optimal 
solution should force a2 = a3 =0 (whenever possible!)

Row 0: z +  2x1 +      3x2 +  Ma2 + Ma3 = 0

Row 1:      0.5x1 + 0.25x2 + s1 =  4

Row 2:           x1 +      3x2 - e2 +    a2 = 20

Row 3:           x1 +        x2 + a3 = 10
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 2 3 0 0 M M 0

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10

Because basic variables a2 and  a3 have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

-M(Row2)  and –M(Row 3) to Row 0 to achieve a proper Row 0 for simplex to 

start
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 2 3 0 0 M M 0

0 z 1 2-2M 3-4M 0 M 0 0 -30M

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 2-2M 3-4M 0 M 0 0 -30M

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10

Min
Ratio
Test

16

20/3

10
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 1-2M/3 0 0 1-M/3 0 -20-10M/3

1 s1 0 5/12 0 1 1/12 0 7/3

2 x2 0 1/3 1 0 -1/3 0 20/3

3 a3 0 2/3 0 0 1/3 1 10/3

Min
Ratio
Test

28/5

20

5

Since a2 has left the basis, we can forget about that column for good!
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 0 0 0 1/2 -20-10M/3

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

Since a3 has left the basis, we can also forget about that column for good!
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Big M Method

Row Basic 
Variable

z x1 x2 s1 e2 a2 a3 RHS

0 z 1 0 0 0 1/2 -25

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

Final Tableau!

The optimal solution is z=-25, x1=x2 = 5, s1=1/4, e2=0.



• The optimal solution (for the original min 
problem) is z=25, x1=x2 = 5, s1=1/4, e2=0.

• Remark: once an artificial variable is NB, it can 
be dropped from the future tableaus since it 
will never become basic again.

• Remark: when choosing the entering variable, 
remember that M is a very large number. For 
example, 

• 4M-2 > 3M + 5000,

• -6M-5 < -3M - 10000. 40

Big M Method



• Another example LP:

41

Big M Method

maximize    z = x1 + x2

subject to    x1 - x2 ≥ 1

-x1 + x2 ≥ 1

x1, x2 ≥ 0
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Big M Method

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 z 1 -1 -1 0 0 M M 0

1 a1 0 1 -1 -1 0 1 0 1

2 a2 0 -1 1 0 -1 0 1 1

Because basic variables a1 and  a2have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

-M(Row1)  and –M(Row 2) to Row 0 to achieve a proper Row 0 for simplex to 

start
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Big M Method

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 z 1 -1 -1 0 0 M M 0

0 z 1 -1 -1 M M 0 0 -2M

1 a1 0 1 -1 -1 0 1 0 1

2 a2 0 -1 1 0 -1 0 1 1

Because basic variables a1 and  a2have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

-M(Row1)  and –M(Row 2) to Row 0 to achieve a proper Row 0 for simplex to 

start
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Big M Method

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 z 1 -1 -1 M M 0 0 -2M

1 a1 0 1 -1 -1 0 1 0 1

2 a2 0 -1 1 0 -1 0 1 1
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Big M Method

Row Basic 
Variable

z x1 x2 e1 e2 a1 a2 RHS

0 z 1 0 -2 M-1 M 0 -2M+1

1 x1 0 1 -1 -1 0 0 1

2 a2 0 0 0 -1 -1 1 2

The final tableau indicates that the solution is unbounded (no exiting variable) 

and one of the artificial variables is nonzero. 

Thus, the original LP is infeasible.



1. Modify the constraints so that the rhs of each constraint is 
nonnegative.  Identify each constraint that is now an = or ≥ 
constraint.

2. Convert each inequality constraint to standard form (add a 
slack variable for ≤ constraints, add an excess variable for ≥ 
constraints).

3. For each ≥ or = constraint, add artificial variables.  Add sign 
restriction ai ≥ 0.

4. Let M denote a very large positive number.  Add (for each 
artificial variable) Mai to min problem objective functions  or  
-Mai to max problem objective functions.

5. Since each artificial variable will be in the starting basis, all 
artificial variables must be eliminated from row 0 before 
beginning the simplex.  Remembering M represents a very 
large number, solve the transformed problem by the simplex. 

Big M Method
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• If all artificial variables in the optimal solution equal zero, the 
solution is ?

47

Big M Method



• If all artificial variables in the optimal solution equal zero, the 
solution is optimal.  

• If any artificial variables are positive in the optimal solution, 
the problem is ? 

48

Big M Method



• If all artificial variables in the optimal solution equal zero, the 
solution is optimal.  

• If any artificial variables are positive in the optimal solution, 
the problem is infeasible.

• When the LP (with the artificial variables) is solved, the final 
tableau may indicate that the LP is unbounded. If the final 
tableau indicates the LP is unbounded and all artificial 
variables in this tableau equal zero, then the original LP is ?

49

Big M Method



• If all artificial variables in the optimal solution equal zero, the 
solution is optimal.  

• If any artificial variables are positive in the optimal solution, 
the problem is infeasible.

• When the LP (with the artificial variables) is solved, the final 
tableau may indicate that the LP is unbounded. If the final 
tableau indicates the LP is unbounded and all artificial 
variables in this tableau equal zero, then the original LP is 
unbounded. If the final tableau indicates that the LP is 
unbounded and at least one artificial variable is positive, then 
the original LP is ?

50

Big M Method



• If all artificial variables in the optimal solution equal zero, the 
solution is optimal.  

• If any artificial variables are positive in the optimal solution, 
the problem is infeasible.

• When the LP (with the artificial variables) is solved, the final 
tableau may indicate that the LP is unbounded. If the final 
tableau indicates the LP is unbounded and all artificial 
variables in this tableau equal zero, then the original LP is 
unbounded. If the final tableau indicates that the LP is 
unbounded and at least one artificial variable is positive, then 
the original LP is infeasible. 

51

Big M Method



For computer programs, it is difficult to 
determine how large M should be. Generally, M 
is chosen to be at least 100 times larger than the 
largest coefficient in the original objective 
function. The introduction of such large 
numbers into the problem can cause roundoff 
errors and other computational difficulties. For 
this reason, most computer codes solve LPs by 
using the two-phase simplex method. 

52

Big M Method - Remark



Two-Phase Simplex

53

Alternative 2 for finding and initial bfs.



• Solve the same LP with the two-phase method

minimize     z = 2x1 + 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

54

- maximize    z = - 2x1 - 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

≡

Two-Phase Simplex Method - Example



• Solve the same LP with the two-phase method

55

maximize    z = - 2x1 - 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

Two-Phase Simplex Method - Example

Row 0: z +  2x1 +     3x2 = 0

Row 1:      0.5x1 + 0.25x2 + s1 =  4

Row 2:           x1 +      3x2 - e2 + a2 = 20

Row 3:           x1 +        x2 + a3 = 10
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Two-Phase Simplex Method - Example

Phase I: Change objective function and solve the following LP 

Min       w= a2 + a3

s.t. 0.5x1 + 0.25x2 + s1 =  4

x1 +      3x2 - e2 + a2 = 20

x1 +        x2 + a3 = 10
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Two-Phase Simplex Method – Phase I

Row Basic 
Variable

w x1 x2 s1 e2 a2 a3 RHS

0 w 1 0 0 0 0 -1 -1 0

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10

Because basic variables a2 and  a3 have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

(Row2)  and (Row 3) to Row 0 to achieve a proper Row 0 for simplex to start
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Two-Phase Simplex Method – Phase I

Row Basic 
Variable

w x1 x2 s1 e2 a2 a3 RHS

0 w 1 0 0 0 0 -1 -1 0

0 w 1 2 4 0 -1 0 0 30

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10

Because basic variables a2 and  a3 have nonzero Row 0 coefficients, do 

elementary row operations to zero them out: Add 

(Row2)  and (Row 3) to Row 0 to achieve a proper Row 0 for simplex to start
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Two-Phase Simplex Method – Phase I

Row Basic 
Variable

w x1 x2 s1 e2 a2 a3 RHS

0 w 1 2 4 0 -1 0 0 30

1 s1 0 1/2 1/4 1 0 0 0 4

2 a2 0 1 3 0 -1 1 0 20

3 a3 0 1 1 0 0 0 1 10

Min
Ratio
Test

16

20/3

10
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Two-Phase Simplex Method – Phase I

Row Basic 
Variable

w x1 x2 s1 e2 a2 a3 RHS

0 w 1 2/3 0 0 1/3 0 10/3

1 s1 0 5/12 0 1 1/12 0 7/3

2 x2 0 1/3 1 0 -1/3 0 20/3

3 a3 0 2/3 0 0 1/3 1 10/3

Min
Ratio
Test

28/5

20

5

Since a2 has left the basis, we can forget about that column for good!
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Two-Phase Simplex Method – Phase I

Row Basic 
Variable

w x1 x2 s1 e2 a2 a3 RHS

0 w 1 0 0 0 0 0

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

Since a3 has left the basis, we can also forget about that column for good!

This is the end of Phase I. Since w=0, move to Phase II with this bfs.



Row 0: z +  2x1 +     3x2 = 0

Row 1:      0.5x1 + 0.25x2 + s1 =  4

Row 2:           x1 +      3x2 - e2 + a2 = 20

Row 3:           x1 +        x2 + a3 = 10

62

maximize    z = - 2x1 - 3x2

subject to    0.5x1 + 0.25x2 ≤  4

x1 +      3x2 ≥ 20

x1 +        x2 = 10

x1, x2 ≥ 0

Two-Phase Simplex Method – Phase IITwo-Phase Simplex Method – Phase II
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Two-Phase Simplex Method – Phase II

Row Basic 
Variable

z x1 x2 s1 e2 RHS

0 z 1 2 3 0 0 0

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

Bring in the original objective.

Zero out the nonzero coefficients of basic variables in Row 0.

Add -2(Row3) – 3(Row2) to Row 0
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Two-Phase Simplex Method – Phase II

Row Basic 
Variable

z x1 x2 s1 e2 RHS

0 z 1 2 3 0 0 0

0 z 1 0 0 1 1/2 -25

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

Bring in the original objective.

Zero out the nonzero coefficients of basic variables in Row 0.

Add -2(Row3) – 3(Row2) to Row 0
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Two-Phase Simplex Method – Phase II

Row Basic 
Variable

z x1 x2 s1 e2 RHS

0 z 1 0 0 1 1/2 -25

1 s1 0 0 0 1 -1/8 1/4

2 x2 0 0 1 0 -1/2 5

3 x1 0 1 0 0 1/2 5

This is a max problem so the current tableau is optimal!

End of Phase II

The optimal solution is z=-25, x1=x2 = 5, s1=1/4, e2=0.



Two-Phase Simplex Method - Summary

• When a basic feasible solution is not readily 
available, the two-phase simplex method may 
be used as an alternative to the Big M method.

• In this method, artificial variables are added to 
the same constraints, then a bfs to the original 
LP is found by solving Phase I LP.

• In Phase I LP, the objective function is to 
minimize the sum of all artificial variables.

• At completion, reintroduce the original LPs 
objective function and determine the optimal 
solution to the original LP.
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Two-Phase Simplex Method – Phase I

• Replace the objective function with:

min w = (sum of all artificial variables). 

• The act of solving the Phase I LP will force the 
artificial variables to be zero. 

• Since the artificial variables are in the starting 
basis, we should create zeros for each artificial 
variables in row 0 and then solve the 
minimization problem. 

• Solving the Phase I LP will result in one of the 
following three cases: 
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Two-Phase Simplex Method – Phase I cont’
• CASE 1: The optimal value of w is greater than zero. In this 

case, the original LP has no feasible solution (which means at 
least one of the ai > 0). 

• CASE 2: The optimal value of w is equal to zero, and no 
artificial ai’s are in the optimal Phase I basis. Then a basic 
feasible solution to the original problem is found. Continue 
to Phase II by bringing in the original objective function. 

• CASE 3: The optimal value of w is zero and at least one 
artificial variable is in the optimal Phase I basis. Recall that 
we wanted a bfs of the original problem. But this means that 
we don’t want the basis to contain any artificial variables. 
Then either we can perform an additional pivot and get rid of 
the artificial variable, or there was a redundant constraint 
and we can delete the constraint with the artificial variable. 

So that in the end, we will get w is zero and no artificial 
variables are in the optimal Phase I basis. 
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Two-Phase Simplex Method – Phase II

• Drop all columns in the optimal Phase I tableau 
that correspond to the artificial variables. And 
combine the original objective function with 
the constraints from the optimal Phase I 
tableau. 

• Make sure that all basic variables have zero in 
row 0 by performing elementary row 
operations. 

• Solve the problem starting with this tableau. 
The optimal solution to the Phase II LP is the 
optimal solution to the original LP. 
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Why does it work?

• Suppose the original LP is feasible. Then this 
feasible solution (with all ai’s being zero) is feasible 
in the Phase I LP with w=0. w=0 is the lowest value 
that w can  get. Hence, it is optimal to Phase I. 
Therefore, if the original LP has a feasible solution 
then the optimal Phase I solution will have w = 0. 

• If the original LP is infeasible then the only way to 
obtain a feasible solution to the Phase I LP is to let 
at least one artificial variable to be positive. In this 
situation, w > 0, hence optimal w will be greater 
than zero. 



• As with the Big M method, the column for any 
artificial variable may be dropped from future 
tableaus as soon as the artificial variable 
leaves the basis.

• The Big M method and Phase I of the two-
phase method make the same sequence of 
pivots. The two-phase method does not cause 
roundoff errors and other computational 
difficulties.

Two-Phase Simplex Method - Remarks


