### **IE 479 Distribution Logistics**

Bahar Yetiş Kara

### **Distribution System Approach**



Decisions made at different times

- Strategic longer scope and less data available (yr+)
- Tactical shorter scope w/ planning data (week to yr)
- Operational very short scope real data (daily)

### The Network Design Problem



### The Network Design Problem



### The Network Design Problem



### **Distribution Network Design**

#### Three key questions for Distribution ND

- How many DCs should there be?
- Where should the DCs be located?
- For each SKU and each customer:
  - which DC should serve the customer, and
  - which plant should serve the DC?

### **Distribution Network Design**

#### Three key questions for Distribution ND

- How many DCs should there be?
- Where should the DCs be located?
- For each SKU and each customer:
  - which DC should serve the customer, and
  - which plant should serve the DC?
- Cost & Performance Trade-Offs
  - Transportation Costs (Inbound versus Outbound)
  - Facility Costs (Fixed versus Throughput)
  - Inventory Costs (Cycle versus Safety Stock)
  - Customer Service (Availability versus Order Cycle Time)

### Facility Location Cost Trade-Offs



# Many to Many Networks

How should I ship from 5 origins to 5 destinations?



# Many to Many Networks

How should I ship from 5 origins to 5 destinations?



### Direct versus Hub

#### Which is better?

- How many trucks are needed?
- What is the cost?
- How can I increase frequency of service?

#### Example Details

- Need to pick up every day from terminals
- Average distance between terminals = 500 miles
- Average distance from terminals to hub = 350 miles

Cost per load

Cost for transportation = \$200 shipment + 1 \$/mile

distance

# Hub Advantages

Hub consolidation reduces costs

 Consolidation increases conveyance utilization
 Transportation has a fixed (per conveyance) cost

 Fewer conveyances are required

 Is consolidation better . . .

Provides better level of service with fewer resources
 Non-stop vs. frequency of service
 Non-stop vs. geographical coverage
 serving more / smaller cities

# Hub Disadvantages

#### Cost of operating the hub

- Facility costs
- Handling costs unloading, sorting, loading
- Opportunity for misrouting, damage, theft (shrinkage)
- Circuity
  - Longer total distance travelled
  - More vehicle-hours expended
- Impact on service levels
  - Added time in-transit
  - Lower reliability of transit

# **Hub Economics**

#### Relative distances

- Degree of circuity
- Vehicle and shipment size
  - Smaller shipments  $\rightarrow$  hub more economical
- Demand pattern
  - Many destinations from each origin
  - Many origins into each destination
- The hub location
  - Significant business generation for passengers
  - Good access for freight
    - Highways access
    - Away from population centers

# **Terminal Bypass Operations**

# When would you want to bypass hub handling? Examples

- Air through flight
  - Use heaviest pair
  - Marketing; reliability; lower costs
- LTL "head loading"
- Rail block placement
- Parcel pre-packaging

Packages physically travel to the hub, but are not touched or handled.

### Directs in a Hub-and-Spoke Network

#### Considerations in setting direct service:

- Demand between E1 and W2
- Service E1-Hub and Hub-W2
- Effect on the hub
- Effect on E1 activities



# **Regional Terminals**

#### What if there is demand between the W terminals?



# Bypassing the Hub



# More Routing Alternatives



### More Routing Alternatives



### Strategic Network

#### Service Offerings from W5 to E5

- Central Hub Routing
- Regional Terminal Routing
- Direct Routing

Central Hub: 3 days, \$100



### Network Structure Tradeoffs

| Structure                                  | Pros                                                                                                      | Cons                                                                                      |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Direct Shipping                            | <ul> <li>No intermediate DCs</li> <li>Simple to coordinate</li> </ul>                                     | <ul><li>Large lot sizes (high inventory levels)</li><li>Large receiving expense</li></ul> |
| Direct w/ Milk Runs                        | <ul> <li>Lower transport costs for smaller<br/>shipments</li> <li>Lower inventory levels</li> </ul>       | Increased coordination complexity                                                         |
| Direct w/Central DC<br>(holding inventory) | Lower IB transport costs<br>(consolidation)                                                               | <ul><li>Increased inventory costs</li><li>Increased handling at DC</li></ul>              |
| Direct w/ Central DC<br>(X-dock)           | <ul> <li>Very low inventory requirements</li> <li>Lower IB transport costs<br/>(consolidation)</li> </ul> | Increased coordination complexity                                                         |
| DC w/ Milk Runs                            | Lower OB transport costs for<br>smaller shipments                                                         | Further increase in complexity                                                            |
| Hybrid System                              | <ul> <li>Best fit of structure for business</li> <li>Customized for product, customer mix</li> </ul>      | Exceptionally high level of complexity for planning and execution                         |

### **Network Structure Drivers**

|   |                                        | Short Distance                       | Medium Distance                                             | Long Distance          |  |  |
|---|----------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------|--|--|
|   | High Density                           | Pvt fleet with milk runs             | <ul><li>X-dock with milk runs</li><li>LTL Carrier</li></ul> | X-dock with milk runs  |  |  |
|   | Medium<br>Density                      | Third Party Milk Runs                |                                                             | LTL or Package Carrier |  |  |
|   | Low Density                            | Third Party Milk Runs or LTL Carrier | LTL or Package Carrier                                      | Package Carrier        |  |  |
| T | Customer density versus Length of Haul |                                      |                                                             |                        |  |  |

### **Distribution System Approach**



Decisions made at different times

- Strategic longer scope and less data available (yr+)
- Tactical shorter scope w/ planning data (week to yr)
- Operational very short scope real data (daily)

# **Course Outline**

- Book categorizes the decisions in five main streams :
  - Forecasting

Designing logistics networks

Strategic

ch.3

- Managing inventories
- Warehouse management

| <ul> <li>Planning and controlling</li> </ul> |             |          |
|----------------------------------------------|-------------|----------|
| long-haul                                    | ch.6        | Tactical |
| short-haul transpor                          | Operational |          |

# Designing the Logistics Network

- May involve
  - Determining the number of facilities (retailers, distirbution centers, warehouses etc)
  - Determining the location of each facility
  - Determining the size of each facility
  - Allocations
  - Transport modes
  - Etc.

# Different types of facilities

- Manufacturing plants
- Distribution centers (DCs)
  - Reducing lead times
  - Increasing product availability
  - Economies pf scale through consolidation
  - Level of support for emergency orders
  - Consolidation point for reverse logistics
- Retailers

### Applications in 3 levels

- Strategic level (Not easy to undone)
  - Airport
  - Metro system
  - Major manufacturing facility
- Tactical level (Should be good for 5 to 10 years)
  - Warehose
  - McDonalds
  - Buslines
- Operational level
  - Post boxes
  - Transfer points for trucks

# Logistics Network Design

- Objectives and criteria vary depending on the sector and on the type of facilities (DCs, plants, etc)
- Criteria
  - Location availability
  - Cost
  - Accessibility
  - Coverage
  - Market share
  - Anti-accessibility (dump sites, bomb testing)

# **Location Problems**

- Suggest and identify options for
  - Number
  - Location
  - Size of facilities
  - Allocation of demands (supplies) to facilities

# **Classification of Location Problems**

- Time
  - Single period
  - Multiple period
- Facility Topology
  - Single type (homogenous)
  - Multi-type
- Material
  - Single commodity
  - Multi commodity
- Interaction Among Facilities
  - Allowed
  - Not allowed

- Dominant material flow
  - Single echelon (either the material flow coming out or entering the facility is negligible)
  - Multi-echelon (both inbound and outbound traffic is valid)
- Demand divisibility
  - Single allocation (each facility or customer be supplied by a single center) indivisible demand
  - Multi-allocation (may be served by > 1 denters) divisible demand

### Single Echelon Single Commodity Location Models