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Abstract. This paper describes how Amazon redesigned the robotic picking algorithm 
used in Amazon Robotics (AR) fulfillment centers (FCs) to enable humans and robots to 
work together effectively. In AR FCs, robotic drives fetch storage pods filled with inven-
tory for associates to pick. The picking algorithm needs to decide which specific units of 
inventory on which pods should be picked to fulfill customer order shipments. We want to 
do so in a way that is most efficient and distance traveled by drives per unit picked is the 
key performance metric. This new algorithm reduced the distance traveled by drives per 
unit picked by 62% without negative operational impact and has since been implemented 
in all AR FCs. This improvement reduced the number of drives required in AR FCs by 
31%, which amounted to half a billion dollars in savings. The redesigned algorithm 
enabled seamless collaboration between associates and robots, and its effectiveness in scal-
ing up convinced Amazon to make AR FCs the standard for new FCs, allowing Amazon to 
reduce the storage footprint by about 29% compared with non-AR FCs.
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Introduction
Since its founding in 1994, Amazon.com has grown 
from an online bookseller to a global retail company. As 
its customer base grew, inventory volume increased, 
and the network expanded, many teams at Amazon had 
to create solutions that would improve the overall cus-
tomer experience and benefits of shopping with Ama-
zon, such as Prime and one-day shipping.

Fulfillment centers (FCs) serve as one of the most crit-
ical elements in the supply chain as the FC is where 
inventory is stored and customer order shipments are 
picked, packed, and shipped. Quickly outgrowing its 
first FC (Jeff Bezos’s garage), Amazon had to expand to 
larger buildings where more inventory could be stored 
to meet the growing customer base. In parallel, the 
e-commerce industry was booming, which put more 
pressure on Amazon to implement innovative solutions 
within its FCs in order to scale and continue to meet the 
demands of the global network.

Traditionally, units of inventory are stored at fixed 
locations on shelves. Picking and stowing both require 
humans to walk to the shelves to retrieve or store inven-
tory. Therefore, stowing and picking operations are usually 

labor-intensive as both stowers and pickers spend a lot 
of their time traveling from one location to another in 
the FC. Labor costs associated with order picking are 
a large fraction of total FC operating costs. One of 
the most impactful changes for our FCs was the 2012 
acquisition of Kiva Systems, now known as Amazon 
Robotics (AR), which led to the introduction of robotics 
in FCs. But this was not simply a case of installing excit-
ing new technology and reaping the benefits. This paper 
tells the story of the crucial role that operations research 
(OR) played in enabling the success of the AR robotic 
picking system. More specifically, we focus on how a 
redesigned algorithm for robotic picking enabled robots 
and humans to work together efficiently at scale in 
Amazon FCs.

The rest of the paper is structured as follows. We 
describe the robotic picking system and how Amazon 
recognized an opportunity for improving the picking 
algorithm used in the system before giving a short 
review of related work. We next describe the robotic 
picking algorithm: the context in which it must operate, 
the legacy algorithm, and the redesigned algorithm. We 
end with sections describing the implementation of the 
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redesigned algorithm, the benefits of the implementa-
tion, and concluding remarks.

Robotic Picking
The robotic picking system at Amazon enables a semiau-
tomated storage system in which robots and teams of 
associates work alongside one another to efficiently ful-
fill customer orders. Rather than our associates going to 
the products’ shelves to pick for a customer order ship-
ment or stow new inventory, robots bring shelves of 
inventory to our associates who are at workstations 
either picking or stowing items.

More specifically, the inventory received by an FC is 
stowed on mobile storage pods. Each pod carries a mix-
ture of items, and the inventory of each item is spread 
over multiple pods. The pods are mobile in that a pod can 
be lifted and transported by a robotic drive (Figure 1). 
These pods are stored within a grid storage zone that has 
stationary workstations for picking and stowing on its 
boundary (Figure 2), and each of these stations is staffed 
with an associate to perform these operations (Figure 3). 
A single FC may have more than 10 storage zones.

To pick an item, a drive must first travel to the pod 
that contains the required item that will be picked. The 
drive then carries the pod to a pick station. When the 
pod reaches the associate at the station, the associate 
picks the item and sends the item on its way to down-
stream operations. The drive then returns the pod to an 
open storage cell in the storage zone, which is usually 
different from its prior storage location. The operations 
to stow an item on a pod are similar. A drive first needs 
to travel to the pod that has been selected for stowing. 
The drive then carries the pod to the stow station, where 
the associate finds an open space in the pod and stows 
the item. The drive then travels with the pod back to the 
storage zone and leaves the pod in an open storage cell. 
Note that, typically, an associate picks several items 
from a single pod or stows several items to a single pod.

This new system brings two new advantages to our 
FCs. First, by bringing inventory to associates, we reduce 
time spent walking from one shelf to another and, thus, 
increase associate picking efficiency, and associates can 
even redirect that time to more value-added tasks, such as 
problem detection and IT management. Second, the new 
design of the storage system allows us to stow 40% more 
inventory in our FCs (Amazon 2020) because of the com-
pact nature of how we fill and store our shelving pods. 
This robotic system became extremely efficient and 
allowed us to move items through our FCs more quickly, 
helping speed up delivery times for our customers.

Challenges and Opportunity for 
Improvement
None of this happened overnight. In order for the new 
technology to work in Amazon FCs, teams first had to 

customize the system and software in order to scale to 
the needs of the buildings and Amazon’s growing net-
work. Multiple teams across Amazon worked on this, 
and by 2014, Amazon’s first robotic FC was up and run-
ning. Initial results were encouraging: overall system 
efficiency was higher than at nonrobotic FCs, and associ-
ates appreciated the reduction in the amount of walking 
required under the new process. However, we saw an 
opportunity to improve the returns on such a large-scale 
change and sought to make the adjustments necessary 
to deliver better results on a global scale.

The work involved in customizing the system included 
redesigning pods and drives and modifying algorithms 
used in the operation of the system. The original picking 
algorithm that determined which items to pick from 
which pods was focused on one order at a time and pick-
ing all items for that order. However, an important feature 
of Amazon picking operations is that because of the large 
number of multi-item order shipments to fulfill, FCs pick 
each item of a multi-item shipment separately and aggre-
gate them downstream using a system called the Amazon 

Figure 1. (Color online) A Robotic Drive Moves Under a 
Mobile Storage Pod (Essentially a Shelf Holding Units of 
Inventory), Lifts the Pod off the Floor, and Transports It 
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Fulfillment Engine: a wall of shelves, where each partially 
picked order occupies a shelf until completely picked (we 
refer to this system as the order-aggregation wall in the 
rest of the paper or, more simply, the wall). In particular, 
this allows an associate to pick for multiple order ship-
ments at the same time from the same pod and for the 
units from the same order shipment to be picked by differ-
ent associates at different times. This is part of the design 
in both the legacy manual and new robotic picking proc-
esses and differs from the fulfillment systems for which 

the robotic picking system was originally designed. The 
picking algorithm, therefore, had to be revised to allow 
for this mode of operations. Another difference was that 
the enormous size of Amazon FCs meant that the pods 
and drives had to be divided into physically separate 
zones, so it was necessary for the algorithm to balance the 
amount of work across the zones. A final point to note is 
that Amazon’s random-stow policy results in inventory 
for the same product being stowed among multiple differ-
ent pods to allow for picking flexibility. This policy differs 

Figure 2. (Color online) Robotic Drives Travel down Aisles and Across Highways to Move Pods to and from Workstations 
Within a Grid Storage Zone 

Figure 3. (Color online) An Associate Picks Inventory from a Mobile Storage Pod 
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from other fulfillment systems for which the robotic pick-
ing system was designed. Therefore, it was necessary to 
consider whether the legacy picking algorithm would still 
work well under such a stowing policy.

Aside from all this work to adapt the algorithm for the 
Amazon context, more work was necessary to improve 
the AR FC pick efficiency. A critical performance metric 
for the robotic picking system is the distance traveled 
by drives per pick and/or stow operation; this metric 
(denoted by drive distance per pick) determines how 
many drives are needed in an FC for a given level of 
volume throughput. Drive distance per pick can be 
improved by increasing the number of picked units per 
pod trip (denoted by “pile-on”) and by reducing the dis-
tance traveled by drives per pod trip. There are three 
operational policies relevant to the drive travel distance: 
• Stowing policy: decides which pods stow received 

inventory.
• Picking policy: decides from which pods to pick 

inventory to satisfy orders.
• Storage policy: decides where to store pods upon 

completion of a stow or pick event.
The modeling and optimization team at Amazon has 

conducted research to develop improved algorithms for 
each of these decision policies. In this paper, we focus on 
the algorithm for the picking policy as this has been 
implemented with significant impact on improving the 
throughput and efficiency in AR FCs. Work on improving 
the stowing and storage policies is previously described 
by Yuan et al. (2018, 2019) and Cezik et al. (2021).

In 2013, our team conducted a preliminary study to 
understand how much pile-on (the number of picked 
units per pod trip as defined previously) could poten-
tially be improved. This study looked at a simplified 
model (relaxing several real-world constraints) deter-
mining from what pods to pick to satisfy a set of orders 
in order to maximize pile-on over a period of time given 
full knowledge of all arrivals to the backlog over this 
time period as well as an online version of the problem 
in which pick decisions could not use information about 
future arrivals to the backlog. Both models were solved 
using mixed-integer programming (MIP). The study 
concluded that there was a significant opportunity to 
improve pile-on and it seemed likely that we could cap-
ture a significant portion of that opportunity. This moti-
vated further research to redesign the picking policies 
used in the robotic picking system.

Related Work
We review some of the relevant literature. Wurman et al. 
(2008) and Enright and Wurman (2011) present a good 
overview of the setting and relevant research problems 
for the type of robotic system discussed in this paper. In 
addition, there are several relevant surveys of the litera-
ture: De Koster et al. (2007) look at order picking in 

warehouses in general, whereas Roodbergen and Vis 
(2009), Gagliardi et al. (2012), and Azadeh et al. (2019) 
focus on automated systems in warehouses. Boysen et al. 
(2019), in particular, survey literature on warehousing 
systems in the context of e-commerce retailers.

Several papers consider operational problems in the 
domain of managing mobile robot fulfillment systems 
that complement the order-picking problem considered 
in this paper. Lamballais et al. (2017) explores how the 
layout of the pod storage area impacts performance. 
Stowing and storage policies are considered by Wei-
dinger et al. (2018), Lamballais et al. (2019), Yuan et al. 
(2018, 2019), and Cezik et al. (2021). Routing the robotic 
drives is a well-researched problem discussed in surveys 
on the routing of automated guided vehicles in various 
contexts, such as Qiu et al. (2002) and Vis (2006), whereas 
Gharehgozli and Zaerpour (2020) wrote a more recent 
paper looking at routing in the specific context of order 
picking for e-commerce retailers.

In the context of order picking, Zou et al. (2017) utilize a 
queuing network model to analyze the picking through-
put rates of various policies for allocating drives to pick 
stations but do not consider any properties of the orders, 
such as deadlines or order consolidation. Rimélé et al. 
(2021) model the order-picking process as a stochastic 
dynamic program but require orders to be assigned for 
picking immediately, whereas in practice, there is usually 
a backlog of orders to be fulfilled. Merschformann et al. 
(2019) propose a discrete event simulation to model and 
evaluate various policies for order assignment, pod selec-
tion, and pod storage assignment. Boysen et al. (2017) for-
mulate an integer program to sequence the orders and 
pods assigned to a single pick station to minimize the 
number of pod visits. Valle and Beasley (2021) formulate 
an integer program to assign pods and orders to pick sta-
tions, but they assume that items in the same order must 
be picked at the same pick station and focus on the static 
rather than the dynamic problem. Wang et al. (2021) 
model the problem of scheduling the assignments of pods 
and orders to pick stations with schedule-induced fluctu-
ations of human pickers’ picking speed as a stochastic 
dynamic program, but they still restrict orders to be 
assigned to the same pick station, and their solution takes 
on the order of two minutes to solve even for moderately 
sized problems that would be considered small problems 
in the Amazon context. Indeed, this is representative of 
the literature in general, in which the scale of Amazon’s 
operations tends to dwarf the size of problems considered 
large in the literature.

As emphasized by van Gils et al. (2018), there is a need 
to go beyond isolated problems and consider practical 
and holistic models. To the best of our knowledge, the 
only other work that describes a successfully imple-
mented algorithm in the context of robotic picking sys-
tems for e-commerce warehousing operations is the 
article by Qin et al. (2022), which matches drives to pods 
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to pickers, and the items each picker has to pick is taken 
as an input. In contrast, an important decision in the 
problem considered in this paper is which items from 
the backlog to pick next, which adds to the difficulty of 
the problem but also increases the potential for reducing 
the total distances traveled by the drives by allowing a 
greater opportunity for increasing the pile-on.

Robotic Picking Algorithm
This section describes the context and requirements of 
both the legacy and redesigned robotic picking algo-
rithms. When a customer places an order with Amazon, 
this order is converted to one or more order shipments, 
each of which gets assigned to an FC and a fulfillment 
path. This decision is made upstream of the picking 
process and, therefore, outside the scope of this paper. 
Subsequently, for each such order shipment, this assign-
ment translates into a due time for picking at the 
assigned FC. At an FC, the assigned order shipments 
that have not yet been picked compose the pick backlog. 
From this backlog, the picking algorithm has to select a 
set of shipments eligible for picking to form the pick 
window—the set of shipments that should be scheduled 
to be picked—and then decides a pick schedule for this 
pick window. This pick schedule entails the set of pods 
to retrieve, the items to pick from each pod (and the cor-
responding shipment each picked item fulfills), and the 
pick station to which each pod is to be sent for picking. 
The size of the pick window is measured in terms of 
number of minutes of work (how long it takes for the 
entire pick window to be picked), typically on the order 
of tens of minutes. This schedule is handed over to the 
AR material handling system for execution but is exe-
cuted for only the first minute, after which the pick algo-
rithm is run again with updated information, refreshing 
the pick schedule. Thus, items in a pick schedule that 
have not yet been picked at the time of the refresh may 
have their assignments reconsidered. Because customer 
orders can be placed at any time of the day, the backlog 
is continuously updated, and therefore, the pick algo-
rithm must execute more than a thousand times a day 
and provide pick schedules without advance knowl-
edge of future customer order shipments entering the 
backlog. These processes are illustrated in a flowchart in 
Figure 4.

The robotic picking algorithm also needs to account 
for the following requirements of the order fulfillment 
system: 
• Satisfying target rates defined for each process 

path: Each order shipment in the pick backlog is cate-
gorized by a process path, which encodes the sequence 
of downstream processes through which the order 
shipment must go before departing the FC. In order to 
ensure that the flow of order shipments to downstream 
processes is operationally feasible (adhering to labor, 

mechanical, and other constraints), each process path 
has a target rate (determined by an upstream system)— 
a rate of picking units per unit time on that process 
path that we want to get as close to as possible without 
exceeding.
• Tracking to cycle-time targets defined for multi- 

item order shipments: Each multi-item order shipment 
occupies its own shelf on the order-aggregation wall 
when partially picked. Hence, this puts an upper limit 
on how many partially picked orders there can be at 
any point in time. If this limit is exceeded, “gridlock” 
occurs, in which the wall runs out of space for items 
arriving for orders above the limit and becomes a bot-
tleneck delaying the upstream picking operations (Gal-
lien and Weber 2010). The amount of time each order is 
left partially picked is, therefore, a critical measure 
affecting how many orders for which we can pick yet 
remaining below this wall capacity. For any order ship-
ment, the time between picking the first and last item 
(i.e., its cycle time) is a reasonable proxy for the amount 
of time that this order shipment takes up capacity in the 
wall. Keeping to the cycle-time targets helps prevent over-
whelming the wall, avoiding gridlock. Addressing the 
cycle-time targets also necessitates that all picks for multi- 
item shipments need to be included in the same pick win-
dow (except for a small percentage to be included in the 
next pick window).
• Remaining feasible for storage zone–level picker 

allocations and not leaving workers idle: Because the 
picking algorithm operates at an FC level with multiple 
zones, it needs to ensure that each zone is allocated 
picks according to its pick throughput capacity. If a 
zone is allocated fewer picks than appropriate for the 
number of active picking stations, the associates pick-
ing in that zone are likely to face a shortage of work, 
leading to unnecessary idle time.
• Satisfying due times for order shipments: Each 

order shipment in the pick backlog has a due time. In 
order to satisfy these due times, pick throughput needs 
to be allocated to each of these due-time groups (in 
other words, priority groups) appropriately. These allo-
cations are determined by an upstream system.

At a high level, the goal of the robotic picking algo-
rithm is to schedule the picks so as to minimize the drive 
distance per pick and maintain a low drive distance per 
pick over time, subject to the preceding constraints.

Redesigning the Robotic 
Picking Algorithm
This section describes how our team redesigned the 
robotic picking algorithm in 2015 so that the drives would 
bring items to associates more efficiently. We first describe 
the legacy algorithm and the scope for improvement, 
then the redesigned algorithm, and finally we discuss 
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how we address an important trade-off in the context of 
the redesigned algorithm.

Legacy Algorithm
The legacy algorithm selected items for the pick window 
according to a strict priority rule on due times. After the 
pick window was created, picks from the pick window 
were then greedily allocated to pick stations and pods 
based on a drive distance per pick estimate for each pod. 
Though the legacy algorithm was very simple and fast, 
there were two major opportunities for improvement. 
First, the structure of this algorithm involved decompos-
ing the problem into two phases: a first phase of selecting 
a pick window without considering pick efficiency and 
then only considering pick efficiency in the second phase 
of scheduling picks from pods. This meant that the leg-
acy algorithm was limited in the pick efficiency it could 
achieve by the output of the first phase. An algorithm 

that considered the pick-window selection and pick- 
scheduling problem jointly could potentially attain a 
much higher pick efficiency. Second, there was no guard 
against excessive greediness (or “cherry picking”) when 
scheduling picks, which meant that pick efficiency 
could start high but degrade significantly over time 
until the backlog was sufficiently replenished. Because 
there is a finite number of drives in each FC, if pick effi-
ciency drops below a certain threshold, we are likely to 
end up with idle pickers and be unable to sustain the max-
imum pick throughput rate. This left an opportunity to 
improve the stability of the pick efficiency over time.

Redesigned Algorithm
The redesigned picking algorithm, therefore, aims to 
jointly optimize the selection of shipments into the pick 
window and the assignment of picks to pods in order 
to minimize drive distance per pick. This allows the 

Figure 4. (Color online) The Robotic Picking Algorithm Described in This Paper Is Responsible for the Processes in the Dashed 
Box in the Context of All the Processes Taking Place from the Time a Customer Places an Order to the Time the Customer 
Receives the Order 
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algorithm to take advantage of the entire pick backlog 
when optimizing for the assignment of picks to pods. 
Unfortunately, including the assignment of pods to pick 
stations is challenging because directly optimizing the 
distance traveled by drives per pick requires solving a 
large combinatorial optimization problem with a nonlin-
ear objective, in which the drive distance per pick would 
be a ratio of two variables, total drive distance and num-
ber of picks. Therefore, we decompose the problem by 
first maximizing pile-on (equivalently, minimizing pod 
trips required per pick) subject to the requirements of the 
order fulfillment system (the “picking module”), then 
minimizing the distance traveled by drives per pod trip 
(the “assignment module”). In this decomposition, the 
picking module is responsible for determining which 
subset of the pick backlog composes the pick window 
and which specific units of inventory on which specific 
pods are used to fulfill the pick window, whereas the 
assignment module is responsible for assigning the 
specified pods to pick stations. This removes the non-
linear aspect of the problem, but the picking module 
still needs to solve a large problem (the full problem 
can be written using on the order of 3.8 million varia-
bles, of which 0.5 million are binary with 7.6 million 
constraints) and is solved using a four-phase decompo-
sition heuristic.

The picking module considers the order shipments to 
be picked and their due times, inventory, available labor, 
throughput, and cycle-time targets and determines which 
order shipments to be picked next and from which pod 
each item in those order shipments should be picked. 
This is a complex problem requiring decisions ranging 
from higher level ones, such as the number of picks by 
process path and storage zone, to lower level ones, such 
as picking a particular item from a particular pod for a 
particular order shipment. As mentioned, this problem is 
too large to solve directly. Therefore, we decomposed the 
problem into phases with each successive phase making 
increasingly granular decisions.

This module proceeds in four phases: feasibility, pod 
selection, provisional schedule creation, and then final 
schedule creation. The solution of each phase is essen-
tially used to restrict the feasible space for the subse-
quent phases. Figure 5 illustrates how each phase relates 
to the others. Each phase is solved with an appropriate 
mathematical program. We now summarize these phases, 
referring the reader to Appendix A for further details. 

1. In the feasibility phase, we determine a feasible 
number of picks by process path and storage zone and 
do so by selecting a suitable subset of available ship-
ments. In this phase, the picks in each process path are 
restricted to those with due times not later than a due- 
time threshold. This due-time threshold is initialized 
from values taken from an upstream system. In each 
iteration of this phase, any process path with picks 
lower than its target rate has its threshold adjusted to a 

later due time (if there exist orders with a later due 
time in that process path) in the next iteration. At each 
iteration, a mixed-integer quadratic program (MIQP) 
determines the number of picks that will minimize the 
sum of squared shortages from the process path target 
rates and zone targets on a percentage basis to thereby 
minimize shortages in a manner that tends to balance 
them (proportionally) across the process paths and 
zones. The output of this phase is a reduced pick back-
log that approximately corresponds to the shipments 
that are planned to be picked over the next day or so.

2. In the pod-selection phase, we solve a sequence of 
MIPs, each generating a set of pods to cover the items 
that need to be picked up to a certain due time, approx-
imately satisfying the feasible output of the feasibility 
phase. The primary goal is to have a small subset of 
pods for subsequent phases, and a secondary goal is to 
respect the feasible zone utilizations of the previous 
phase. The output of this phase is a nested sequence 
of sets of pods: the initial pod set holds inventory 
required for all the shipments in the reduced pick back-
log, and the final pod set holds inventory required for 
all the shipments in the subset of the reduced pick 
backlog with the earliest due times, and each set of 
pods is a subset of the previous pod set. Thus, the final 
set of pods in the sequence corresponds to the pods 
planned to be assigned over the next few hours or so.

3. In the provisional schedule creation phase, we use 
a greedy algorithm to select and schedule order ship-
ments to satisfy overall pick requirements (as deter-
mined by the previous two phases), matching them to 
the final set of pods in the nested sequence of pod sets 
from the pod-selection phase. The goal is to limit the 
number of times that a matched pod is used again in a 
future matching and avoid a myopic decision at the 
expense of future pick efficiency. The output of this 
phase is a candidate pick schedule: the shipments that 
are planned to be picked in the next 15 minutes or so 
(making up the candidate pick window), the specific 
units of inventory that fulfill these shipments, and the 
pods holding these units.

4. In the final schedule creation phase, we search in 
the neighborhood of the candidate pick schedule from 
the previous phase by augmenting the selected pods 
with a set of pods that makes it feasible to completely 
pick any partially scheduled shipment, thus enabling a 
different choice of subset of shipments to be completely 
versus partially picked. We solve an MIP to determine 
a final output of order shipments to be picked next and 
from which pod each item in those order shipments 
should be picked. This returns the final pick schedule 
(along with the corresponding final pick window).

The proposed assignment module then takes these 
picks and assigns them to stations. This module has two 
goals: guarantee that each station does not experience idle 
time and, subject to that, minimize the distance the pods 
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chosen by the picking module have to travel. To that end, 
the assignment problem solves an MIP to minimize the 
distance traveled by the pods and give each station at least 
a fixed amount of work. When a pick station’s queue of 
incoming work runs low, the assignment module assigns 
pods (with the associated picks from the pick schedule) to 
stations, and the assignment module triggers a rerun of 
the picking module to schedule more picks when the 
number of picks it has to work with is low.

Trade-off Between Multi-item Order Shipment 
Cycle Time and Pile-on
Two important parameters that affect the performance 
of our algorithm are the overall size of the pick window 

(here, size is measured in terms of minutes of work, that 
is, how long it takes for the pick window to be picked) 
and how frequently it is updated (how much of the pick 
window is picked before it is refreshed). The picking 
module takes the pick-window size as an input parame-
ter and returns the pick window as part of the output 
of phase 4 as often as required by the update frequency. 
Thus, these parameters are not optimized by the picking 
module, but both parameters influence the overall 
throughput of multi-item order shipments. Items for 
such shipments are not necessarily picked all at the same 
time or by the same picker, and partially picked ship-
ments occupy space on the order-aggregation wall. If the 
multi-item order shipment cycle time is high, shipments 

Figure 5. (Color online) The Four Phases of the Picking Algorithm Successively Reduce the Search Space of the Problem 
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take longer to get completed, and we run a higher risk of 
hitting capacity on the wall, causing delays. Selecting a 
suitable pick-window size and update frequency offers a 
degree of control over cycle time. In this section, we dis-
cuss the trade-off between cycle time and pick efficiency.

Intuitively, there is a trade-off between these two 
measures: the more freedom we give to the picking 
algorithm, the more efficient we can be with our drives 
(and the higher pile-on we can achieve) but the less con-
trol we have over the cycle times of multi-item order 
shipments. We propose models that approximate these 
measures given some high-level parameters about the 
system. Both models are derived by making simplifying 
assumptions in a probabilistic framework. In the cycle- 
time model, given the size of the pick window and the 
frequency with which it is updated, the model outputs 
an estimate of the cycle time for a multi-item order ship-
ment containing any specified number of items. This 
estimate is given in the form of a closed-form expression. 
In the pile-on model, given the size and update fre-
quency of the pick-window and the eligible backlog 
size, the model outputs an estimate of the pile-on that 
can be attained. This estimate is derived via an iterative 
method. Appendix B contains more details on both 
models.

Based on these models, we observe that increasing 
pick-window size generally increases the pile-on. When 
the pick-window size is very small relative to backlog, 
we can cherry-pick the shipments from a small number 
of pods that contain the most items from the backlog, 
resulting in a relatively high pile-on. As we increase 
the pick-window size, the opportunity to cherry-pick 
becomes more limited because more pods need to be 
selected. As the pick-window size continues to increase, 
we are allowed a greater degree of freedom that increases 
the average number of items from the backlog in a typical 
pod, which provides a more sustainable improvement 
of pile-on. In most situations, the pick-window size is in 
the region where increasing pick-window size would 
increase pile-on. On the other hand, increasing the pick- 
window size increases cycle time because, once the first 
unit of an order shipment has been picked, it is less likely 
for the other units of that order shipment to be picked 
when there is more freedom to select other units.

Therefore, in general, we face a trade-off between 
pile-on and cycle time, and we want to understand how 
the trade-off behaves quantitatively in order to be most 
effective operationally. Figure 6 shows an example of 
the trade-off that can be achieved.

Based on this analysis, a suitable pick-window size 
and update frequency were selected as the standard 
parameters with which to run the algorithm. This also 
potentially allows us to use pick-window size as a lever 
to control the trade-off according to the situation. For 
example, during peak seasons, we are more likely to set 
a larger pick-window size to attain a high pile-on in 

order to sustain a high pick rate and accept larger cycle 
times. On the other hand, during off-peak seasons, a 
lower pile-on might be sufficient to sustain the required 
pick rate, and we can set a smaller pick-window size to 
reduce cycle time and speed up order completion time.

Implementation
A major challenge in implementing this algorithm was 
that it had to enter into production in existing, opera-
tional AR FCs, and any issues, whether bugs in the soft-
ware code or unexpectedly poor performance of the 
algorithm, would immediately bottleneck the opera-
tions of those FCs, possibly leaving them unable to clear 
their backlogs and impacting their performance for days 
after. Those managing these FCs would understandably 
be concerned about their ability to fulfill customer demand 
should anything go awry. As with the implementation of 
any new system, there were risks that things could go 
wrong, and the stakes were high. Therefore, we had to do 
all we could to identify and eliminate any potential issues 
prior to rolling out the algorithm to production and earn 
the confidence and buy-in from those managing picking 
operations on the ground, who would be most impacted 
by the change.

We first designed and prototyped the new AR picking 
algorithm within a simulation environment and con-
ducted extensive testing. This was completed in 2015. 
Then, we ported this implementation to production 
with the help of our technology teams. The picking 
technology team implemented a flexible architecture for 
the AR pick scheduling space, breaking down the prob-
lem into multiple microservices, enabling separation of 
responsibilities and parallel development. A team of 
specialists across multiple disciplines, including engi-
neering and research, tested the software at a handful of 

Figure 6. (Color online) There Is a Trade-off Between the 
Cycle Time of Multi-item Order Shipments and Pile-on as 
Shown in This Example Graph (Cycle Times Are Normalized; 
Pile-on Numbers Are Shown Relative to One but Without 
Scale) 
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FCs in 2016. The team took on a goal of running incre-
mental pilots at the end of two-week sprints, allowing 
early and parallel discovery of any production issues, 
incrementally gaining confidence in the ability of the 
new algorithm to meet the business objective of picking 
the right items within their due times and also optimiz-
ing for picking efficiency.

Because our objective was to provide incremental vali-
dated progress for our business, we only activated the 
picking module at first. The largest subproblem (corre-
sponding to the final schedule creation phase described 
in Appendix A), which is solved multiple times during 
this phase, has on the order of 50,000 variables, most of 
which are binary, and 500,000 constraints for a typical 
AR FC. So we initially focused on satisfying the run-time 
requirement for creating pick schedules, which is on the 
order of one minute. By 2017, the teams were confident 
that the implemented code was ready for production 
use.

Subsequently, we deployed the production imple-
mentation of the picking module in several AR FCs to 
collect data on its performance. To this end, for several 
months, we monitored the key performance metrics and 
the metrics related to system requirements for order ful-
fillment. In this phase, we validated our experimental 
results obtained during the design of the algorithm.

After long discussions with the business and technology 
teams responsible for warehouse operations and software, 
we also came to an agreement to exclude the assignment 
module from the production implementation and con-
tinue using the legacy assignment algorithm. Technology 
teams argued that the picking module already allowed us 
to capture a significant benefit and would still work well 
with the legacy assignment algorithm, avoiding the devel-
opmental risks of overhauling both systems at the same 
time. Thus, only the picking module was implemented 
though this decision may be revisited in the future if the 
relative benefits and costs of implementing the assignment 
module change.

The models built for quantifying the trade-off between 
cycle time and pile-on were used to help understand 
what a good pick-window size should be. Business 
teams chose a pick-window size that corresponded to a 
suitable point on the Pareto curve with expected cycle 
time and pile-on numbers that were in line with business 
requirements. Currently, pick-window size is set as a 
static parameter, unchanged from its initial setting, but 
there is the potential to dynamically adjust it.

In production, the picking algorithm runs in the back-
ground without user intervention approximately every 
minute. The scope of our production implementation 
has been incrementally widened, and it has been opera-
tional in all (more than 50) Amazon AR FCs in North 
America since 2017.

From the successful implementation of the redesigned 
picking module, a major lesson learned is the tremendous 

value unlocked from having multiple teams working 
together. The redesigned algorithm worked well, but 
merely coming up with a new algorithm would not 
have been enough to achieve the impact this work 
eventually had. It took the combined effort of multiple 
teams, including but not limited to the research team 
designing the algorithm, the software development team 
planning and coding the incremental pilots, and the busi-
ness team making the case to invest resources into the 
project, for the algorithm to make it to production and 
achieve the efficiency gains projected from computational 
experiments.

Benefits
The deployment of the redesigned robotic picking algo-
rithm reduced the drive distance per pick by 62% in pro-
duction compared with the legacy algorithm, having no 
negative impact on operational efficiency. This improve-
ment reduced the number of drives required in AR FCs 
by 31%, which, in turn, amounted to half a billion dollars 
in direct savings from the algorithm over the period 
between 2017, when the algorithm was first imple-
mented in production, and 2020, when the savings were 
evaluated. This savings figure was evaluated purely 
based on the cost savings from the drives, and the 
annual savings from the algorithm are projected to 
increase in scale as the number of FCs grows. Moreover, 
the reduction in drive distance resulted in a correspond-
ing 31% reduction in drive energy usage though neither 
the financial nor environmental impact of this has been 
quantified.

The success of the use of robots in AR FCs at Amazon 
is now celebrated, but at the time of Amazon’s acquisi-
tion of Kiva, it was not yet clear that the robotic picking 
system would work sufficiently well at the scale and 
context required in Amazon to justify the capital invest-
ment involved in setting up each AR FC. A huge indirect 
contribution of this algorithmic work was to convince 
Amazon that robotic picking could scale well to our FCs. 
This work helped drive Amazon toward making AR 
FCs the standard for new FCs, storing, as mentioned ear-
lier, 40% more inventory than non-AR FCs (Amazon 
2020). Equivalently, this means building AR FCs required 
29% (because 1� 1

1:4 � 0:29) less area allocated to storing 
inventory, compared with building non-AR FCs that 
were able to hold the same amount of inventory.

More broadly, these results contribute toward a vision 
of seamless collaboration between associates and robots 
and serve as evidence of the value of robots to everyone 
throughout Amazon, ensuring the success of the 2012 
Kiva acquisition and encouraging further investment in 
(and adoption of) robotics. Since the introduction of 
robots, Amazon has added more than 300,000 full-time 
jobs globally (Amazon 2018), including jobs necessitated 
by the use of robots, such as positions in IT, technicians 
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to service and maintain the robots, and even new career 
paths such as flow control specialists (Amazon 2019). 
Furthermore, the AR FCs often employ more people 
than non-AR FCs because of the higher volume of inven-
tory managed in these buildings as well as the variety of 
jobs supporting these robotic systems.

Conclusions
This work is a clear illustration of the synergy between 
technology and OR. The new technology—robotic drives 
and pods, together with the software system that con-
trolled the system robots—can improve the efficiency of 
FCs but only up to a certain point. In order to sustain 
improvements in operational efficiency as the operations 
scaled up, OR was necessary to model and optimize for 
key performance metrics using advanced algorithms so 
that the system was tailored to the strengths of the new 
technology. The robotic picking system was able to per-
form closer to its full potential when paired with algo-
rithms designed using OR techniques to effectively utilize 
its strengths. OR was used not only in the picking algo-
rithm, but also in the preliminary study done to reveal the 
opportunity of improvement and ability to capture it. 
This gave Amazon the confidence to devote more resour-
ces to redesigning the picking algorithm. In sum, by ena-
bling new technology to scale effectively, OR has played a 
key role in ushering in a new era of fulfillment technology, 
enabling humans and robots to work together efficiently.
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Appendix A. Details of the Picking Module
In this appendix, we describe the picking module in more 
technical detail. We begin by describing a formulation of the 
problem that we ideally want to solve. Because this formula-
tion turns out to be intractable at the required scale, we then 
describe the decomposition of the problem into phases.

The goal of the picking module is to select the pick sched-
ule that maximizes the overall pile-on and keeps the pile-on 
consistently high in each time period (say, within 80% of the 
overall pile-on), subject to the various operational con-
straints. We start with some notation: 
• K: set of SKUs
• Z: set of zones
• T: set of time periods in time horizon
• Pz: set of pods in zone z with P � ∪z∈ZPz
• I: set of process paths

• Di: set of due times for process path i up to a suitable due 
time d̄i
• Ji: set of shipments in process path i with J �∪i∈IJi
• Ji(d): set of shipments in Ji with due time at most d
• apk0: initial units of inventory for SKU k on pod p
• bjk0: initial units of SKU k for shipment j in backlog
• czt: available zone capacity in zone z in period t
• [fit, f̄ it]: allowed target rate range for process path i in 

period t with nominal pick rate fit
• hidt: pick throughput allocations for process path i and 

due time d in period t
• git: partial picking allowance for process path i in 

period T
• d̄i: latest due time for process path i
We can assume that most, if not all, of the backlog has to be 

picked by the end of the time horizon (approximately a day or 
so). Therefore, in place of maximizing pile-on, we may reason-
ably minimize the number of times a pod is selected in a 
period. Similarly, we may constrain the number of pods 
selected in each time period to be at least 80% of the average 
number of pods selected in each time period, weighted by 
P

i∈Ifit. The variables in the model are as follows: 
• xpt: binary variable indicating whether pod p is selected 

in period t
• wjt: binary variable indicating whether shipment j is 

assigned to the pick window in period t
• ypkt: number of units of SKU k to be picked from pod p in 

period t
• sjkt: number of units of SKU k not picked for shipment j 

by period t if j is selected into the pick window in period t 
(zero otherwise)
• apkt: units of inventory for SKU k on pod p in period t
• bjkt: units of SKU k for shipment j in backlog in period t
The formulation can then be written as

min
X

p∈P, t∈T
xpt (A.1) 

subject to (A.2) 
X

p∈P
xpt ≥ 0:8

P
i∈I fit

P
i∈I, τ∈T fiτ

X

p∈P, τ∈T
xpτ ∀t ∈ T, (A.3) 

X

j∈J
bjktwjt�

X

j∈J
sjkt �

X

p∈P
ypkt ∀k ∈K, t∈T, (A.4) 

X

k∈K
sjkt ≤

X

k∈K
bjkt� 1

 !

wjt ∀j∈ J,t∈T, (A.5) 
X

j∈J
sjkt ≤

X

p∈P
apkt ∀k ∈K, t∈T, (A.6) 

ypkt ≤ apktxpt ∀k ∈K,p∈P, t∈T, (A.7) 
X

p∈Pz,k∈K
ypkt ≤ czt ∀z∈Z, t∈T, (A.8) 

X

j∈Ji

sjkt ≤ git ∀i ∈ I,t∈T, (A.9) 

fit ≤
X

k∈K, j∈Ji

bjktwjt� sjkt
� �

≤ f̄it ∀i ∈ I,t∈T, (A.10) 

hidt≤
X

k∈K,j∈Ji(d)
bjktwjt� sjkt
� �

∀i∈ I,d∈Di,t∈T, (A.11) 

apkt� apk,t�1�ypk,t�1

∀k∈K,p∈P,t∈T, with ypk0�0,
(A.12) 
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bjkt�bjk,t�1(1�wj,t�1)+sjk,t�1

∀j∈ J,k∈K,t∈T, with wj0� sjk0�0,
(A.13) 

0≤ypkt≤ apkt ∀k∈K,p∈P,t∈T, (A.14) 
0≤ sjkt≤bjkt ∀k∈K, j∈ J,t∈T, (A.15) 
wjt ∈{0,1} ∀j∈ J,t∈T, (A.16) 
xpt ∈{0,1} ∀p∈P,t∈T: (A.17) 

Unfortunately, this formulation proves too large to be practi-
cal at the required scale because of the large number of pods 
and shipments that need to be considered. Therefore, we 
propose a decomposition of the problem that aims to solve 
the same problem over a reduced search space. As previ-
ously illustrated in Figure 5, each phase successively reduces 
the search space as follows: phase 1 restricts the pick backlog 
to that which should be picked over the next day or so; phase 
2 structures the reduced backlog from phase 1 into nested 
subsets and selects nested subsets of pods to cover these 
nested backlogs; phase 3 considers the smallest pod set from 
phase 2 (approximately corresponding to pods that are 
planned to be used in the next few hours) and selects ship-
ments that are fulfilled by units picked from these pods, pro-
ducing a provisional pick schedule for the next 15 minutes 
or so; finally, phase 4 uses the provisional pick schedule 
from phase 3 to constrain the search space as it solves a mod-
ification of the original problem.

We are now ready to discuss the phases in more detail. 
Phase 1, the feasibility phase, considers the backlog and the 
desired number of picks in order to determine a suitable 
restriction of the backlog that still allows a feasible number 
of picks by process path and storage zone. It does this by 
solving an MIQP to try to balance each process path and 
zone, minimizing the sum of squared shortages from their 
targets on a percentage (i.e., proportional to their target 
quantities) basis. Each process path is initially restricted to 
units with due times before some threshold. If any process 
path does not have sufficient units in the reduced backlog, 
its threshold is moved later and the MIQP is resolved. This is 
repeated until all process paths have sufficient units to meet 
their target rates or have no more available units in the back-
log. The additional notation used for the MIQP is as follows: 
• JP: set of shipments that are currently partially picked
• JB

i : set of shipments in backlog for process path i with 
due time at most d̄i with JB �∪i∈IJB

i
• apk: units of inventory for SKU k on pod p at start of cur-

rent time period
• bjk: units of SKU k for shipment j in backlog at start of cur-

rent time period
• cz: available zone capacity in zone z during current time 

period
• fi: target rate for process path i during current time 

period
• gi: partial picking allowance for process path i
• d̄i: latest due time for process path i

The variables in the MIQP are as follows: 
• wj: binary variable indicating whether shipment j is 

selected into the reduced pick backlog
• ypk: number of units of SKU k to be picked from pod p
• uj: binary variable indicating whether shipment j is parti-

ally but not completely picked

• sjk: number of units of SKU k not picked for shipment j
• ri: target rate down-scaling factor for process path i
• qz: zone capacity downscaling factor for zone z

The MIQP can then be written as

min
X

i∈K
1 � ri( )

2
+
X

z∈Z
1 � qz
� �2 (A.18) 

subject to (A.19) 
X

j∈JB

bjkwj �
X

j∈JB

sjk �
X

p∈P
ypk ∀k ∈ K, (A.20) 

X

k∈K
sjk ≤

X

j∈K
bjk � 1

0

@

1

Auj ∀j ∈ JB, (A.21) 

X

j∈JB
i

uj ≤ gi ∀i ∈ I, (A.22) 

X

k∈K, p∈Pz

ypk � czqz ∀z ∈ Z, (A.23) 

X

k∈K, j∈JB
i

bjkwj �
X

j∈JB
i

sjk � firi ∀i ∈ I, (A.24) 

0 ≤ ypk ≤ apk ∀k ∈ K, p ∈ P, (A.25) 
X

p∈P
ypk +

X

j∈JB

sjk ≤
X

p∈P
apk ∀k ∈ K, (A.26) 

0 ≤ sjk ≤ bjk ∀k ∈ K, j ∈ JB, (A.27) 
0 ≤ ri ≤ 1 ∀i ∈ I, (A.28) 
0 ≤ qz ≤ 1 ∀z ∈ Z, (A.29) 
wj � 1 ∀j ∈ JP, (A.30) 
wj ∈ {0, 1} ∀j ∈ JB, (A.31) 
xp ∈ {0, 1} ∀p ∈ P: (A.32) 

This phase returns a reduced pick backlog B̄ indicated by the 
values of wj in the MIQP solution, and only shipments from 
B̄ are considered in subsequent phases. Furthermore, it 
returns zone capacity utilization rates αz (given by the value 
of qz in the solution) that we can realistically manage to 
achieve.

In phase 2, the pod-selection phase, we find a collection of 
pods to cover the items that need to be picked from B̄, 
approximately satisfying the output of the feasibility phase. 
The goal is to have a small subset of pods for subsequent 
phases. An initial set cover problem using pods to cover 
units is solved using an MIP over the reduced backlog result-
ing from the feasibility phase. The primary objective of the 
set covering is to minimize the number of pods selected, and 
a secondary goal is to come close to the zone utilizations of 
the previous phase. A sequence of set cover problems is then 
solved, each generating a set of pods to cover the items that 
need to be picked with due time before a given threshold. 
This due-time threshold is brought forward in time with 
each subsequent problem solved, and the set of pods is 
restricted to be a subset of the solution from the previous 
problem in the sequence, thus producing a sequence of 
nested subsets of pods. The initial set cover problem uses the 
following additional notation: 
• P̂: set of pods already in current pick window or en route 

to pick station
• JiB̄ : set of shipments in reduced backlog for process path i 

with due time at most d̄i with JB̄ � ∪i∈IJB̄
i

� �
∪ JP
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• µz: penalty per unit of workload deficit in zone z
The variables in the initial set cover problem are as follows: 
• xp: binary variable indicating whether pod p is selected in 

the pod cover
• yzk: units of SKU k to be picked from zone z
• lz: units of workload deficit in zone z

The initial set cover problem can then be written as

min
X

p∈P
xp +

X

z∈Z
µzlz (A.33) 

subject to (A.34) 
X

p∈Pz

apkxp ≥ yzk ∀z ∈ Z, k ∈ K, (A.35) 

X

z∈Z
yzk �

X

j∈JB̄ bjk

∀k ∈ K, (A.36) 

X

k∈K
yzk + lz ≥ αz

X

k∈K, j∈JB̄

bjk ∀z ∈ Z, (A.37) 

lz ≥ 0 ∀z ∈ Z, (A.38) 
yzk ≥ 0 ∀z ∈ Z, k ∈ K, (A.39) 
xp � 1 ∀p ∈ P̂, (A.40) 
xp ∈ {0, 1} ∀p ∈ P: (A.41) 

This returns a pod cover P∗ (given by the values of xp in the 
solution) that holds sufficient inventory for the shipments in 
B̄. Next, we solve a sequence of set cover problems, each 
time considering a smaller subset of the reduced backlog 
(based on due times) and constraining the feasible set of pods 
to be a subset of the solution to the previous set cover problem, 
starting with P∗. The notation used in each set cover problem in 
the sequence is as follows: 
• d: the latest due time considered in this set cover prob-

lem; we move d earlier each time we proceed to the next 
problem in the sequence
• Pnext

d : set of pods that was the output of the previous set 
cover problem in the sequence (the first problem has Pnext

d � P∗)
• JB̄ (d): set of shipments in reduced backlog with due time 

at most d
There is only one variable in each set cover problem in the 

sequence: xp, the indicator variable for whether pod p ∈ P∗ is 
selected in the pod cover. Each problem can be formulated 
as follows:

min
X

z∈Z,p∈Pz

1
αz

xp (A.42) 

subject to (A.43) 
X

p∈P
apkxp ≥

X

j∈JB̄ (d)

bjk ∀k ∈ K, (A.44) 

xp � 1 ∀p ∈ P̂, (A.45) 
xp � 0 ∀p ∉ Pnext

d , (A.46) 
xp ∈ {0, 1} ∀p ∈ P: (A.47) 

The output of this phase is a nested sequence of pod sets P∗d 
that are planned to be picked to fulfill shipments from the 
reduced backlog at varying time horizons. Thus, if the smallest 
due time considered in the sequence of set cover problems is 
d � d, then we have Pd

∗, the set of pods that we plan to use in 
the near future (say, in the next few hours) to cover JB̄ (d), the 
subset of B̄ that we plan to pick in the next few hours.

In phase 3, the provisional schedule creation phase, we 
select shipments from JB̄ (d) and match them to pods from Pd

∗. 
The goal is to select a pick window and schedule that limits 
the number of times that a selected pod needs to be used 
again in a future time period. To do so, suppose that, for 
each SKU k from each shipment j, we plan to pick yjk units, 
and these units are to be picked from pods Pselected. We 
define the deficiency πk of a SKU k to be the remaining units 
of k required in the reduced backlog B̄ minus the available 
inventory of pods that have not yet been selected:

πk �
X

j∈B̄

bjk � yjk
� �

�
X

p∈P∗\Pselected

apk: (A.48) 

This can be interpreted as the number of units of this SKU 
that should be picked from pods selected so as to avoid 
being forced to pick that SKU from one of these pods again 
in the future (we may assume that the total number of units 
for any SKU in the backlog does not exceed available inven-
tory). A positive deficiency implies that a previously selected 
pod has to be selected again at some point in the future. 
Therefore, we should aim to pick units from pods in such a 
way as to reduce the deficiency to zero or less. At the same 
time, we also want to avoid picking more than the deficiency 
to avoid being overly greedy and having a high pile-on now 
at the expense of future pile-on. Therefore, if we are able to 
have πk(t) � 0 ∀k, t, then we can avoid greediness in the pick 
schedule by picking just the right amount from each pod so 
that the pod is no longer needed in the rest of the schedule, 
helping to achieve a stable pile-on over time.

All shipments are given three scores: based on how much 
they reduce the deficiency, whether they can be picked from 
an independent pod (pods that cover whole shipments 
only—these are desirable pods, but we also want to avoid 
selecting too many of them now and leaving too few for 
future periods), and what fraction of the shipment has been 
picked previously. A greedy algorithm is run to select a col-
lection of pods that cover the most preferred shipments, and 
the shipments are ranked according to the appropriate score, 
depending on which score is most relevant at the time based 
on the state of the backlog and which pods and shipments 
the algorithm has previously selected. One complication is 
to ensure that this greedy approach respects the workload 
allocated to each zone, but for simplicity, we omit how this is 
handled by the algorithm. The output of this phase is a provi-
sional pick schedule: the set of shipments Jprov with units in the 
pick window (units planned to be picked over the next 15 
minutes or so), and the set of pods Pprov that covers these units.

In phase 4, the final schedule creation phase, we search in 
the neighborhood of the solution from the previous phase to 
determine a final output of order shipments to be picked 
next and from which pod each item in those order shipments 
should be picked. We augment the pod collection Pprov from 
the provisional schedule creation phase with the smallest 
set of pods from P∗ that allows us to complete all partially 
picked shipments in Jprov, giving us more freedom to choose 
which subset of shipments to only partially pick and which 
to completely pick. Then, we solve an MIP to select pods 
from this augmented collection of pods PM∗ and shipments 
from the backlog to minimize total deficiency. This is essen-
tially the full problem we want to solve in the picking 
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module, but in this fourth phase, we select from among the 
smaller set of pods determined by the previous phases. The 
additional notation used in the phase 4 MIP is as follows: 
• PM∗

z : considered set of pods in zone z with PM∗ � ∪z∈ZPM∗
z 

determined as described
• Jprov

i : subset of Jprov in process path i
• JM

i : set of shipments in process path i considered in phase 
4 with JM

i � Jprov
i ∪ JB̄

i , JM � ∪i∈IJM
i

• JM
i (d): set of shipments in JM

i with due time at most d
The variables in the model are as follows: 
• xp: binary variable indicating whether pod p is selected
• wj: binary variable indicating whether shipment j is 

selected into the pick window
• ypk: number of units of SKU k to be picked from pod p
• sjk: number of units of SKU k not picked for shipment j
• πk: deficiency of SKU k

The formulation can then be written as

min
X

k∈K
πk (A.49) 

subject to (A.50) 
X

j∈JM

bjkwj �
X

j∈JM

sjk �
X

p∈PM∗
ypk ∀k ∈ K, (A.51) 

X

k∈K
sjk ≤

X

k∈K
bjk � 1

 !

wj ∀j ∈ JM, (A.52) 
X

j∈JM

sjk ≤
X

p∈PM∗
apk ∀k ∈ K, (A.53) 

ypk ≤ apkxp ∀k ∈ K, p ∈ PM∗ , (A.54) 
X

p∈PM∗
z

ypk ≤ cz ∀z ∈ Z, (A.55) 

X

j∈JM
i

sjk ≤ gi ∀i ∈ I, (A.56) 

fi ≤
X

k∈K, j∈JM
i

bjkwj � sjk
� �

≤ f̄i ∀i ∈ I, (A.57) 

hid ≤
X

k∈K, j∈JM
i (d)

bjkwj � sjk
� �

∀i ∈ I, d ∈ Di, (A.58) 

πk≥
X

j∈JM

bjk(1�wj)�
X

p∈PM∗
apk(1�xp)+

X

j∈JM

sjk

∀k∈K, (A.59) 
πk≥0 ∀k∈K, (A.60) 
0≤ypk≤ apk ∀k∈K,p∈PM∗ , (A.61) 

0≤ sjk≤bjk ∀k∈K, j∈ JM, (A.62) 

wj ∈{0,1} ∀j∈ JM, (A.63) 
xp ∈{0,1} ∀p∈PM∗ : (A.64) 

The output of this phase is then the final pick schedule: the set of 
shipments with units in the pick window, the set of pods from 
which these units should be picked, and the number of units of 
each SKU to be picked from each pod for each shipment.

Appendix B. Pile-on and Cycle-Time Models
A description of both the pile-on and cycle-time models is 
given in this appendix. Using these two models in conjunction 
allows us to quantitatively estimate the trade-off between pile- 
on and cycle time when changing the pick-window size and 

update frequency. Here, we measure pick-window size by the 
length of time it takes to completely pick everything in the pick 
window given a constant pick rate.

B.1. Pile-on Model
The pile-on model estimates the pile-on that can be achieved 
given pick-window size and update frequency, number of 
pods, size of backlog, size of backlog by priority levels (based 
on due time), and required picks by priority levels. It begins 
with an initial pile-on estimate and then, assuming that all units 
are uniformly randomly distributed among each of the pods, 
computes the expected number of pods needed to cover enough 
units to replenish the pick window. This gives an expected 
pile-on for the entire pick window, which we use as the pile- 
on estimate for the next iteration. We iterate until the pile-on 
converges, and we take the limit as the final expected pile-on.

In this model, we assume that we have a pick-window size 
of n minutes, planned to be picked at a uniform rate of η�units 
per minute. Thus, the pick window contains N � nη�units. 
After Nα�units have been picked, the pick window is replen-
ished up to size N, selecting from an eligible backlog of size B 
located in γ�pods. We assume that some proportion Bα�of the 
backlog is new and could potentially be already covered by 
the pods previously selected to cover the N(1� α) units 
remaining in the pick window. We assume that all units are 
uniformly randomly distributed among the pods. We initial-
ize the system with the remaining N(1� α) units covered by 
γN(1�α) pods, and we want to understand the expected pile- 
on in such a system. In practice, the model needs to handle 
the additional complication that varying due times in the 
backlog reduces the degree of freedom to select units, but for 
simplicity, we omit that part of the model.

First, we define a few functions. Suppose we have χ�units 
that are uniformly randomly distributed among γ�pods, and 
we want to compute F(χ,ρ,γ), the expected number of these 
units covered by a fixed set of ρ�pods. Then, we have 
F(χ,ρ,γ) � χρ=γ.

Next, suppose that we have to pick χ�units from a selection 
of β�units that are uniformly randomly distributed among γ�
pods, and we want to estimate the probability φξ(χ,β,γ) that 
ξ�of these γ�pods are sufficient to cover χ�units. The number 
of units covered by a given subset of ξ�pods can be modeled 
as a Bin(β,ξ=γ) random variable, which can be approxi-
mated as a N(βξ=γ,βξ(γ� ξ)=γ2) random variable. The 
probability that this given subset of ξ�pods covers the suffi-
cient number of units is then approximated by 

ψξ(χ,β,γ) � P Z ≥
χ� β ξγ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

β ξγ
γ�ξ
γ

q

2

6
4

3

7
5, 

where Z is the standard normal variable. But there are γ
ξ

� �

possible subsets of ξ�pods, so if we make the approximation 
that whether each subset covers the required units is inde-
pendent of each other, then we have φξ(χ,β,γ) � 1�

(1� ψξ(χ,β,γ))
γ
ξ

� �

. Computationally, we further approximate 
γ
ξ

� �

by γe=ξ
� �ξ

=
ffiffiffiffiffiffiffiffiffi
2πξ
√� �

.
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Finally, given χ�units required from β�units uniformly ran-
domly distributed among γ�pods, the expected number of 
pods G(χ,β,γ) required to cover these units can be approxi-
mated by G(χ,β,γ) �min(

Pγ
ξ�0(1� φξ(χ,β,γ)),χ), using the 

complementary cumulative distribution function formula 
for the expectation of a discrete random variable and the fact 
that no more than χ�pods are needed to cover χ�units.

Now we are ready to consider the expected pile-on. 
1. At the time of replenishing the pick window, we are left 

with N(1 � α) units in the pick window covered by γN(1�α)
pods.

2. We consider how many pods we need to cover the 
required Nα�units needed to replenish the pick window.

3. NewUnitsCovered �min(F(BBα,γN(1�α),γ), Nα) of the 
backlog are units that are new to the backlog and already cov-
ered by the γN(1�α) pods.

4. This leaves RemainingUnits �Nα �NewUnitsCovered 
to be covered.

5. This requires AdditionalPods � G(RemainingUnits, B�
NewUnitsCovered,γ� γN(1�α)) additional pods.

6. Therefore, we have expected pile-on

π �
N

γN(1�α) +AdditionalPods :

7. Iterating and replacing γN(1�α) by N(1 � α)=π�in each 
iteration, we converge to an expected pile-on.

In practice, accounting for varying due times complicates 
the way we compute π�in each iteration.

B.2. Cycle-Time Model
The cycle-time model estimates the cycle time by order ship-
ment size (number of items in the order shipment) given 
pick-window size and update frequency. The model assumes 
the following dynamics. The pick window starts with the num-
ber of items that can be picked over the pick-window size 
given a fixed constant pick rate. Items are picked according to 
this pick rate with the next item to be picked chosen uniformly 
at random from the remaining items in the pick window and 
independent of past picks. When the time comes for the pick 
window to be updated (after a constant time has passed based 
on the update frequency), unpicked items in the pick window 
remain in the pick window, and new items are added to bring 
it up to the original size. Items belonging to the same order 
shipment always enter the pick window at the same time. 
Based on these dynamics, we derive a closed-form expression 
for the expected cycle time for any order shipment size.

More concretely, we define the target size of the pick win-
dow to be the time taken to complete picking, n minutes. 
According to the dynamics described, the pick time of a unit 
is independently and uniformly distributed over the target 
window size, but if it is not picked in the first nα�minutes, in 
which α ∈ (0, 1] is the window update frequency, then the 
window is replenished up to its target size and the n minute 
period is reset. Therefore, each item is picked in the Xth 
nα-minute period, where X ~ Geo(α), and the pick time of 
each item is (X� 1)nα+Y, where Y ~ U[0, nα] is independ-
ent of X.

Let Zm
(u) be the time of the uth pick of a shipment of size m. 

We wish to compute the expected time between the (n� 1) th 

and nth pick for a shipment of size m given by

λm
u � E Zm

(u) � Zm
(u�1)

h i
: (B.1) 

We note that

λm
u � λ

m�1
u�1 ∀m ≥ 2, 3 ≤ u ≤ m, (B.2) 

so it suffices to compute λm
2 for all m. Conditioning on how 

many of the m items are picked in the first nα-minute period, 
we get the following:

λm
2 � (1� α)

mλm
2 +mα(1� α)m�1nαE[W]

+
Xm

v�2

m
v

� �

αv(1� α)m�v
µv,m

2 , (B.3) 

where W is the number of periods separating the first and 
second pick and

µv,m
2 � E Zm

(2) � Zm
(1)
�
�Zm
(v) ≤ nα < Zm

(v+1)

h i
(B.4) 

is the expected time between the first two picks of a ship-
ment of size m given that exactly v of them are picked in the 
first nα-minute period.

Using the memoryless property of the geometric distribu-
tion, W ~ Geo(1� (1� α)m�1

), so

E[W] � 1
1� (1� α)m�1 : (B.5) 

Using the fact that the uth order statistic of v uniformly dis-
tributed random variables follows a Beta(u, v+ 1� u) distri-
bution, we have

µv,m
2 � nα 2

v+ 1� nα 1
v+ 1 � nα 1

v+ 1 : (B.6) 

Now, we have

λm
2 �

nα
1� (1�α)m

qα(1�α)m�1

1� (1�α)m�1+
Xm

v�2

m
v

� �

αv(1�α)m�v 1
v+1

" #

:

(B.7) 
Because

Xm+1

v�0

m + 1
v

� �

αv(1 � α)m+1�v
� 1, (B.8) 

we can also write this as

λm
2 �

nα
1� (1� α)m

mα(1� α)m�1

1� (1� α)m�1 +
1� (1� α)m+1

α(m+ 1)

"

� (1� α)m �m
2 α(1� α)

m�1
�

: (B.9) 

This gives a closed-form solution. From this, we can obtain 
the expected time between any two consecutive picks λm

u �

λm�u+2
2 and total cycle time Γm �

Pm
u�2 λ

m
u .
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Verification Letter
Jeetu Mirchandani, Director, Software Development, Amazon 
Fulfillment Technology, Amazon.com, 410 Terry Avenue North, 
Seattle, Washington 98109, writes:

“I write this letter in support of the submission titled 
‘Algorithm for Robotic Picking in Amazon Fulfillment Centers 
Enables Humans and Robots to Work Together Effectively’ to 
the INFORMS Journal on Applied Analytics.

“Since its founding in 1994, Amazon.com has grown from 
an online bookseller to a global retail company. As its customer 
base grew, inventory volume increased, and the network 
vastly expanded. As a result, many teams at Amazon had to 
create solutions that would improve the overall customer expe-
rience and benefits of shopping with Amazon, such as Prime 
and one-day shipping.

“Fulfillment centers (FCs) serve as one of the most critical 
elements in the supply chain as it is here where inventory is 
stored and customer orders are picked, packed, and shipped. 
Quickly outgrowing its first FC (Jeff Bezos’ garage), Amazon 
had to expand to larger buildings where more inventory could 
be stored to meet the growing customer base. In parallel, the 
e-commerce industry was booming, which put more pressure 
on Amazon to implement innovative solutions within its FCs 
in order to scale and continue to meet the demands of the 
global network. One of the most impactful changes for its ful-
fillment centers was the 2012 acquisition of Kiva Systems, now 
known as Amazon Robotics (AR), which led to the introduc-
tion of robotics.

“This robotic technology enabled a semiautomated storage 
system—robots and teams of associates working alongside one 
another to efficiently and safely fulfill customer orders. Rather 
than Amazon’s associates going to the products to pick a cus-
tomer order or stow new inventory, robots bring shelves of 
inventory to the associates who are either picking or stowing 
items. This new system brought multiple advantages to Ama-
zon’s buildings. By robotically bringing pods of inventory 
to pick stations, associates were able to reduce the time they 
spent walking from one shelf to another and redirect that time 
to more value-added tasks, such as problem detection and IT 
management. The new design of the storage system also 
allowed Amazon to stow 40% more inventory in its buildings 
due to the compact nature of how its shelving pods are filled 
and stored. This robotic system became extremely efficient and 
allowed Amazon employees to more quickly move items 
throughout the FCs, helping speed up delivery times for 
customers.

“None of this happened overnight. For the new technology 
to work in Amazon.com FCs, teams first had to customize the 
system and software to scale to the needs of the buildings and 
Amazon’s growing network. Teams in both Seattle and Boston 
took on this challenge. By 2014 Amazon’s first robotic FC was 
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up and running. Initial results and associate feedback on the 
new process was positive. However, Amazon saw room for 
improvement and adjustments had to be made to deliver 
results at a global scale.

“In 2015, the modeling and optimization team at Amazon.-
com redesigned the robotic picking algorithm so that robotic 
drives could more efficiently bring items to associates. The 
new algorithms minimized the average distance the robots had 
to travel per item picked. Not only did the algorithms reduce 
travel distance, they also reduced idle time between pod inter-
actions, another benefit to the associates. After simulating the 
algorithms, the teams implemented them in the software run-
ning the FCs, which has since been introduced to more than 50 
robotic fulfillment centers.

“Results were far better than expected. The distance traveled 
by drives per unit picked was reduced by 62% without opera-
tional impact. This improvement reduced the number of drives 
AR FCs required by 31%, which in turn amounted to half a bil-
lion dollars in savings to Amazon. Moreover, the algorithm 
increased the likelihood an associate would be able to pick 
multiple items from one storage pod, minimizing travel time 
and pod turnover. The redesigned algorithm supported the 
overall Amazon Robotic system, which enables seamless col-
laboration between associates and robots, creating more jobs 
and career options for associates. The system’s ability to scale 
and capture the advantages of robotic technology and pod- 
based storage convinced Amazon executives to make AR FCs 
the standard for new FCs, allowing Amazon to reduce the stor-
age footprint compared with what would have been required 
if only non-AR FCs were constructed.

“The financial results spoke for themselves and served as 
evidence of the value of robots to everyone throughout Ama-
zon, ensuring the success of the 2012 Kiva acquisition and 
encouraging further investment in robotics. Since the introduc-
tion of robots, Amazon has added more than a million new 

jobs globally, including jobs that were created because of the 
use of robots, such as positions in IT as well as roles necessary 
for the service and maintenance of the robots. Furthermore, the 
AR FCs often employ more people due to the higher volume of 
inventory managed in these buildings, as well as the variety of 
jobs supporting these robotic systems.

“With a focus on algorithmic efficiency and effectiveness, 
operations research has been able to shorten the overall develop-
ment time necessary for wide scale deployment, while increas-
ing the overall performance of a critical robotic system used 
within Amazon. The algorithmic improvements have enabled 
sustained improvements in operational efficiency and have 
played a key role in accelerating Amazon’s fulfillment opera-
tions, enabling humans and robots to work together efficiently.”

Russell Allgor is the chief scientist for Amazon.com, where he 
leads a team of mathematical modeling experts to improve the effi-
ciency of Amazon’s operations using data analysis, modeling, simu-
lation, and optimization. Ideas and algorithms developed by Russell 
and his team have returned billions of dollars to Amazon’s bottom 
line. Before joining Amazon.com, he worked in applied R&D for 
Bayer AG in Germany. Russell holds a PhD in chemical engineering 
from MIT and a BS from Princeton University.

Tolga Cezik is a senior principal research scientist at Amazon.com, 
where his research focuses on process design and algorithms for 
fulfillment center operations and transportation systems. He has pre-
viously worked as a researcher at Bell Labs, Université de Montréal, 
and Tilburg University. Tolga holds a PhD in operations research 
from Columbia University and a BS in industrial engineering and 
operations research from Middle East Technical University.

Daniel Chen is a research scientist in the modeling and optimi-
zation team at Amazon.com, where his research focuses on improv-
ing the effectiveness of fulfillment operations. He also holds a 
concurrent appointment as a research scientist at the Institute of 
High Performance Computing in Singapore. Daniel holds a PhD in 
operations research from MIT and a BA in mathematics from the 
University of Cambridge.
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