
Algorithm for Robotic Picking in Amazon Fulfillment Centers
Enables Humans and Robots to Work Together Effectively
Russell Allgor,a Tolga Cezik,a Daniel Chena,*
a Amazon.com, Seattle, Washington 98109
*Corresponding author
Contact: rallgor@amazon.com (RA); cezikm@amazon.com (TC); chonglic@amazon.com, https://orcid.org/0000-0001-6538-5608 (DC)

Received: April 5, 2021
Revised: April 11; 2022; July 26, 2022
Accepted: August 1, 2022
Published Online in Articles in Advance:
January 5, 2023

https://doi.org/10.1287/inte.2022.1143

Copyright: © 2023 The Author(s)

Abstract. This paper describes how Amazon redesigned the robotic picking algorithm
used in Amazon Robotics (AR) fulfillment centers (FCs) to enable humans and robots to
work together effectively. In AR FCs, robotic drives fetch storage pods filled with inven-
tory for associates to pick. The picking algorithm needs to decide which specific units of
inventory on which pods should be picked to fulfill customer order shipments. We want to
do so in a way that is most efficient and distance traveled by drives per unit picked is the
key performance metric. This new algorithm reduced the distance traveled by drives per
unit picked by 62% without negative operational impact and has since been implemented
in all AR FCs. This improvement reduced the number of drives required in AR FCs by
31%, which amounted to half a billion dollars in savings. The redesigned algorithm
enabled seamless collaboration between associates and robots, and its effectiveness in scal-
ing up convinced Amazon to make AR FCs the standard for new FCs, allowing Amazon to
reduce the storage footprint by about 29% compared with non-AR FCs.

History: This paper was refereed.
Open Access Statement: This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License. You are free to download this work and share with others, but
cannot change in any way or use commercially without permission, and you must attribute this work
as “INFORMS Journal on Applied Analytics. Copyright © 2023 The Author(s). https://doi.org/10.1287/
inte.2022.1143, used under a Creative Commons Attribution License: https://creativecommons.org/
licenses/by-nc-nd/4.0/.”

Keywords: e-commerce • logistics • warehouse order picking • optimization

Introduction
Since its founding in 1994, Amazon.com has grown
from an online bookseller to a global retail company. As
its customer base grew, inventory volume increased,
and the network expanded, many teams at Amazon had
to create solutions that would improve the overall cus-
tomer experience and benefits of shopping with Ama-
zon, such as Prime and one-day shipping.

Fulfillment centers (FCs) serve as one of the most crit-
ical elements in the supply chain as the FC is where
inventory is stored and customer order shipments are
picked, packed, and shipped. Quickly outgrowing its
first FC (Jeff Bezos’s garage), Amazon had to expand to
larger buildings where more inventory could be stored
to meet the growing customer base. In parallel, the
e-commerce industry was booming, which put more
pressure on Amazon to implement innovative solutions
within its FCs in order to scale and continue to meet the
demands of the global network.

Traditionally, units of inventory are stored at fixed
locations on shelves. Picking and stowing both require
humans to walk to the shelves to retrieve or store inven-
tory. Therefore, stowing and picking operations are usually

labor-intensive as both stowers and pickers spend a lot
of their time traveling from one location to another in
the FC. Labor costs associated with order picking are
a large fraction of total FC operating costs. One of
the most impactful changes for our FCs was the 2012
acquisition of Kiva Systems, now known as Amazon
Robotics (AR), which led to the introduction of robotics
in FCs. But this was not simply a case of installing excit-
ing new technology and reaping the benefits. This paper
tells the story of the crucial role that operations research
(OR) played in enabling the success of the AR robotic
picking system. More specifically, we focus on how a
redesigned algorithm for robotic picking enabled robots
and humans to work together efficiently at scale in
Amazon FCs.

The rest of the paper is structured as follows. We
describe the robotic picking system and how Amazon
recognized an opportunity for improving the picking
algorithm used in the system before giving a short
review of related work. We next describe the robotic
picking algorithm: the context in which it must operate,
the legacy algorithm, and the redesigned algorithm. We
end with sections describing the implementation of the

266

INFORMS JOURNAL ON APPLIED ANALYTICS
Vol. 53, No. 4, July–August 2023, pp. 266–282

ISSN 2644-0865 (print), ISSN 2644-0873 (online) https://pubsonline.informs.org/journal/ijaa

mailto:rallgor@amazon.com
mailto:cezikm@amazon.com
mailto:chonglic@amazon.com
https://orcid.org/0000-0001-6538-5608
https://doi.org/10.1287/inte.2022.1143
https://doi.org/10.1287/inte.2022.1143
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

redesigned algorithm, the benefits of the implementa-
tion, and concluding remarks.

Robotic Picking
The robotic picking system at Amazon enables a semiau-
tomated storage system in which robots and teams of
associates work alongside one another to efficiently ful-
fill customer orders. Rather than our associates going to
the products’ shelves to pick for a customer order ship-
ment or stow new inventory, robots bring shelves of
inventory to our associates who are at workstations
either picking or stowing items.

More specifically, the inventory received by an FC is
stowed on mobile storage pods. Each pod carries a mix-
ture of items, and the inventory of each item is spread
over multiple pods. The pods are mobile in that a pod can
be lifted and transported by a robotic drive (Figure 1).
These pods are stored within a grid storage zone that has
stationary workstations for picking and stowing on its
boundary (Figure 2), and each of these stations is staffed
with an associate to perform these operations (Figure 3).
A single FC may have more than 10 storage zones.

To pick an item, a drive must first travel to the pod
that contains the required item that will be picked. The
drive then carries the pod to a pick station. When the
pod reaches the associate at the station, the associate
picks the item and sends the item on its way to down-
stream operations. The drive then returns the pod to an
open storage cell in the storage zone, which is usually
different from its prior storage location. The operations
to stow an item on a pod are similar. A drive first needs
to travel to the pod that has been selected for stowing.
The drive then carries the pod to the stow station, where
the associate finds an open space in the pod and stows
the item. The drive then travels with the pod back to the
storage zone and leaves the pod in an open storage cell.
Note that, typically, an associate picks several items
from a single pod or stows several items to a single pod.

This new system brings two new advantages to our
FCs. First, by bringing inventory to associates, we reduce
time spent walking from one shelf to another and, thus,
increase associate picking efficiency, and associates can
even redirect that time to more value-added tasks, such as
problem detection and IT management. Second, the new
design of the storage system allows us to stow 40% more
inventory in our FCs (Amazon 2020) because of the com-
pact nature of how we fill and store our shelving pods.
This robotic system became extremely efficient and
allowed us to move items through our FCs more quickly,
helping speed up delivery times for our customers.

Challenges and Opportunity for
Improvement
None of this happened overnight. In order for the new
technology to work in Amazon FCs, teams first had to

customize the system and software in order to scale to
the needs of the buildings and Amazon’s growing net-
work. Multiple teams across Amazon worked on this,
and by 2014, Amazon’s first robotic FC was up and run-
ning. Initial results were encouraging: overall system
efficiency was higher than at nonrobotic FCs, and associ-
ates appreciated the reduction in the amount of walking
required under the new process. However, we saw an
opportunity to improve the returns on such a large-scale
change and sought to make the adjustments necessary
to deliver better results on a global scale.

The work involved in customizing the system included
redesigning pods and drives and modifying algorithms
used in the operation of the system. The original picking
algorithm that determined which items to pick from
which pods was focused on one order at a time and pick-
ing all items for that order. However, an important feature
of Amazon picking operations is that because of the large
number of multi-item order shipments to fulfill, FCs pick
each item of a multi-item shipment separately and aggre-
gate them downstream using a system called the Amazon

Figure 1. (Color online) A Robotic Drive Moves Under a
Mobile Storage Pod (Essentially a Shelf Holding Units of
Inventory), Lifts the Pod off the Floor, and Transports It

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s) 267

Fulfillment Engine: a wall of shelves, where each partially
picked order occupies a shelf until completely picked (we
refer to this system as the order-aggregation wall in the
rest of the paper or, more simply, the wall). In particular,
this allows an associate to pick for multiple order ship-
ments at the same time from the same pod and for the
units from the same order shipment to be picked by differ-
ent associates at different times. This is part of the design
in both the legacy manual and new robotic picking proc-
esses and differs from the fulfillment systems for which

the robotic picking system was originally designed. The
picking algorithm, therefore, had to be revised to allow
for this mode of operations. Another difference was that
the enormous size of Amazon FCs meant that the pods
and drives had to be divided into physically separate
zones, so it was necessary for the algorithm to balance the
amount of work across the zones. A final point to note is
that Amazon’s random-stow policy results in inventory
for the same product being stowed among multiple differ-
ent pods to allow for picking flexibility. This policy differs

Figure 2. (Color online) Robotic Drives Travel down Aisles and Across Highways to Move Pods to and from Workstations
Within a Grid Storage Zone

Figure 3. (Color online) An Associate Picks Inventory from a Mobile Storage Pod

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
268 INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s)

from other fulfillment systems for which the robotic pick-
ing system was designed. Therefore, it was necessary to
consider whether the legacy picking algorithm would still
work well under such a stowing policy.

Aside from all this work to adapt the algorithm for the
Amazon context, more work was necessary to improve
the AR FC pick efficiency. A critical performance metric
for the robotic picking system is the distance traveled
by drives per pick and/or stow operation; this metric
(denoted by drive distance per pick) determines how
many drives are needed in an FC for a given level of
volume throughput. Drive distance per pick can be
improved by increasing the number of picked units per
pod trip (denoted by “pile-on”) and by reducing the dis-
tance traveled by drives per pod trip. There are three
operational policies relevant to the drive travel distance:
• Stowing policy: decides which pods stow received

inventory.
• Picking policy: decides from which pods to pick

inventory to satisfy orders.
• Storage policy: decides where to store pods upon

completion of a stow or pick event.
The modeling and optimization team at Amazon has

conducted research to develop improved algorithms for
each of these decision policies. In this paper, we focus on
the algorithm for the picking policy as this has been
implemented with significant impact on improving the
throughput and efficiency in AR FCs. Work on improving
the stowing and storage policies is previously described
by Yuan et al. (2018, 2019) and Cezik et al. (2021).

In 2013, our team conducted a preliminary study to
understand how much pile-on (the number of picked
units per pod trip as defined previously) could poten-
tially be improved. This study looked at a simplified
model (relaxing several real-world constraints) deter-
mining from what pods to pick to satisfy a set of orders
in order to maximize pile-on over a period of time given
full knowledge of all arrivals to the backlog over this
time period as well as an online version of the problem
in which pick decisions could not use information about
future arrivals to the backlog. Both models were solved
using mixed-integer programming (MIP). The study
concluded that there was a significant opportunity to
improve pile-on and it seemed likely that we could cap-
ture a significant portion of that opportunity. This moti-
vated further research to redesign the picking policies
used in the robotic picking system.

Related Work
We review some of the relevant literature. Wurman et al.
(2008) and Enright and Wurman (2011) present a good
overview of the setting and relevant research problems
for the type of robotic system discussed in this paper. In
addition, there are several relevant surveys of the litera-
ture: De Koster et al. (2007) look at order picking in

warehouses in general, whereas Roodbergen and Vis
(2009), Gagliardi et al. (2012), and Azadeh et al. (2019)
focus on automated systems in warehouses. Boysen et al.
(2019), in particular, survey literature on warehousing
systems in the context of e-commerce retailers.

Several papers consider operational problems in the
domain of managing mobile robot fulfillment systems
that complement the order-picking problem considered
in this paper. Lamballais et al. (2017) explores how the
layout of the pod storage area impacts performance.
Stowing and storage policies are considered by Wei-
dinger et al. (2018), Lamballais et al. (2019), Yuan et al.
(2018, 2019), and Cezik et al. (2021). Routing the robotic
drives is a well-researched problem discussed in surveys
on the routing of automated guided vehicles in various
contexts, such as Qiu et al. (2002) and Vis (2006), whereas
Gharehgozli and Zaerpour (2020) wrote a more recent
paper looking at routing in the specific context of order
picking for e-commerce retailers.

In the context of order picking, Zou et al. (2017) utilize a
queuing network model to analyze the picking through-
put rates of various policies for allocating drives to pick
stations but do not consider any properties of the orders,
such as deadlines or order consolidation. Rimélé et al.
(2021) model the order-picking process as a stochastic
dynamic program but require orders to be assigned for
picking immediately, whereas in practice, there is usually
a backlog of orders to be fulfilled. Merschformann et al.
(2019) propose a discrete event simulation to model and
evaluate various policies for order assignment, pod selec-
tion, and pod storage assignment. Boysen et al. (2017) for-
mulate an integer program to sequence the orders and
pods assigned to a single pick station to minimize the
number of pod visits. Valle and Beasley (2021) formulate
an integer program to assign pods and orders to pick sta-
tions, but they assume that items in the same order must
be picked at the same pick station and focus on the static
rather than the dynamic problem. Wang et al. (2021)
model the problem of scheduling the assignments of pods
and orders to pick stations with schedule-induced fluctu-
ations of human pickers’ picking speed as a stochastic
dynamic program, but they still restrict orders to be
assigned to the same pick station, and their solution takes
on the order of two minutes to solve even for moderately
sized problems that would be considered small problems
in the Amazon context. Indeed, this is representative of
the literature in general, in which the scale of Amazon’s
operations tends to dwarf the size of problems considered
large in the literature.

As emphasized by van Gils et al. (2018), there is a need
to go beyond isolated problems and consider practical
and holistic models. To the best of our knowledge, the
only other work that describes a successfully imple-
mented algorithm in the context of robotic picking sys-
tems for e-commerce warehousing operations is the
article by Qin et al. (2022), which matches drives to pods

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s) 269

to pickers, and the items each picker has to pick is taken
as an input. In contrast, an important decision in the
problem considered in this paper is which items from
the backlog to pick next, which adds to the difficulty of
the problem but also increases the potential for reducing
the total distances traveled by the drives by allowing a
greater opportunity for increasing the pile-on.

Robotic Picking Algorithm
This section describes the context and requirements of
both the legacy and redesigned robotic picking algo-
rithms. When a customer places an order with Amazon,
this order is converted to one or more order shipments,
each of which gets assigned to an FC and a fulfillment
path. This decision is made upstream of the picking
process and, therefore, outside the scope of this paper.
Subsequently, for each such order shipment, this assign-
ment translates into a due time for picking at the
assigned FC. At an FC, the assigned order shipments
that have not yet been picked compose the pick backlog.
From this backlog, the picking algorithm has to select a
set of shipments eligible for picking to form the pick
window—the set of shipments that should be scheduled
to be picked—and then decides a pick schedule for this
pick window. This pick schedule entails the set of pods
to retrieve, the items to pick from each pod (and the cor-
responding shipment each picked item fulfills), and the
pick station to which each pod is to be sent for picking.
The size of the pick window is measured in terms of
number of minutes of work (how long it takes for the
entire pick window to be picked), typically on the order
of tens of minutes. This schedule is handed over to the
AR material handling system for execution but is exe-
cuted for only the first minute, after which the pick algo-
rithm is run again with updated information, refreshing
the pick schedule. Thus, items in a pick schedule that
have not yet been picked at the time of the refresh may
have their assignments reconsidered. Because customer
orders can be placed at any time of the day, the backlog
is continuously updated, and therefore, the pick algo-
rithm must execute more than a thousand times a day
and provide pick schedules without advance knowl-
edge of future customer order shipments entering the
backlog. These processes are illustrated in a flowchart in
Figure 4.

The robotic picking algorithm also needs to account
for the following requirements of the order fulfillment
system:
• Satisfying target rates defined for each process

path: Each order shipment in the pick backlog is cate-
gorized by a process path, which encodes the sequence
of downstream processes through which the order
shipment must go before departing the FC. In order to
ensure that the flow of order shipments to downstream
processes is operationally feasible (adhering to labor,

mechanical, and other constraints), each process path
has a target rate (determined by an upstream system)—
a rate of picking units per unit time on that process
path that we want to get as close to as possible without
exceeding.
• Tracking to cycle-time targets defined for multi-

item order shipments: Each multi-item order shipment
occupies its own shelf on the order-aggregation wall
when partially picked. Hence, this puts an upper limit
on how many partially picked orders there can be at
any point in time. If this limit is exceeded, “gridlock”
occurs, in which the wall runs out of space for items
arriving for orders above the limit and becomes a bot-
tleneck delaying the upstream picking operations (Gal-
lien and Weber 2010). The amount of time each order is
left partially picked is, therefore, a critical measure
affecting how many orders for which we can pick yet
remaining below this wall capacity. For any order ship-
ment, the time between picking the first and last item
(i.e., its cycle time) is a reasonable proxy for the amount
of time that this order shipment takes up capacity in the
wall. Keeping to the cycle-time targets helps prevent over-
whelming the wall, avoiding gridlock. Addressing the
cycle-time targets also necessitates that all picks for multi-
item shipments need to be included in the same pick win-
dow (except for a small percentage to be included in the
next pick window).
• Remaining feasible for storage zone–level picker

allocations and not leaving workers idle: Because the
picking algorithm operates at an FC level with multiple
zones, it needs to ensure that each zone is allocated
picks according to its pick throughput capacity. If a
zone is allocated fewer picks than appropriate for the
number of active picking stations, the associates pick-
ing in that zone are likely to face a shortage of work,
leading to unnecessary idle time.
• Satisfying due times for order shipments: Each

order shipment in the pick backlog has a due time. In
order to satisfy these due times, pick throughput needs
to be allocated to each of these due-time groups (in
other words, priority groups) appropriately. These allo-
cations are determined by an upstream system.

At a high level, the goal of the robotic picking algo-
rithm is to schedule the picks so as to minimize the drive
distance per pick and maintain a low drive distance per
pick over time, subject to the preceding constraints.

Redesigning the Robotic
Picking Algorithm
This section describes how our team redesigned the
robotic picking algorithm in 2015 so that the drives would
bring items to associates more efficiently. We first describe
the legacy algorithm and the scope for improvement,
then the redesigned algorithm, and finally we discuss

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
270 INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s)

how we address an important trade-off in the context of
the redesigned algorithm.

Legacy Algorithm
The legacy algorithm selected items for the pick window
according to a strict priority rule on due times. After the
pick window was created, picks from the pick window
were then greedily allocated to pick stations and pods
based on a drive distance per pick estimate for each pod.
Though the legacy algorithm was very simple and fast,
there were two major opportunities for improvement.
First, the structure of this algorithm involved decompos-
ing the problem into two phases: a first phase of selecting
a pick window without considering pick efficiency and
then only considering pick efficiency in the second phase
of scheduling picks from pods. This meant that the leg-
acy algorithm was limited in the pick efficiency it could
achieve by the output of the first phase. An algorithm

that considered the pick-window selection and pick-
scheduling problem jointly could potentially attain a
much higher pick efficiency. Second, there was no guard
against excessive greediness (or “cherry picking”) when
scheduling picks, which meant that pick efficiency
could start high but degrade significantly over time
until the backlog was sufficiently replenished. Because
there is a finite number of drives in each FC, if pick effi-
ciency drops below a certain threshold, we are likely to
end up with idle pickers and be unable to sustain the max-
imum pick throughput rate. This left an opportunity to
improve the stability of the pick efficiency over time.

Redesigned Algorithm
The redesigned picking algorithm, therefore, aims to
jointly optimize the selection of shipments into the pick
window and the assignment of picks to pods in order
to minimize drive distance per pick. This allows the

Figure 4. (Color online) The Robotic Picking Algorithm Described in This Paper Is Responsible for the Processes in the Dashed
Box in the Context of All the Processes Taking Place from the Time a Customer Places an Order to the Time the Customer
Receives the Order

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s) 271

algorithm to take advantage of the entire pick backlog
when optimizing for the assignment of picks to pods.
Unfortunately, including the assignment of pods to pick
stations is challenging because directly optimizing the
distance traveled by drives per pick requires solving a
large combinatorial optimization problem with a nonlin-
ear objective, in which the drive distance per pick would
be a ratio of two variables, total drive distance and num-
ber of picks. Therefore, we decompose the problem by
first maximizing pile-on (equivalently, minimizing pod
trips required per pick) subject to the requirements of the
order fulfillment system (the “picking module”), then
minimizing the distance traveled by drives per pod trip
(the “assignment module”). In this decomposition, the
picking module is responsible for determining which
subset of the pick backlog composes the pick window
and which specific units of inventory on which specific
pods are used to fulfill the pick window, whereas the
assignment module is responsible for assigning the
specified pods to pick stations. This removes the non-
linear aspect of the problem, but the picking module
still needs to solve a large problem (the full problem
can be written using on the order of 3.8 million varia-
bles, of which 0.5 million are binary with 7.6 million
constraints) and is solved using a four-phase decompo-
sition heuristic.

The picking module considers the order shipments to
be picked and their due times, inventory, available labor,
throughput, and cycle-time targets and determines which
order shipments to be picked next and from which pod
each item in those order shipments should be picked.
This is a complex problem requiring decisions ranging
from higher level ones, such as the number of picks by
process path and storage zone, to lower level ones, such
as picking a particular item from a particular pod for a
particular order shipment. As mentioned, this problem is
too large to solve directly. Therefore, we decomposed the
problem into phases with each successive phase making
increasingly granular decisions.

This module proceeds in four phases: feasibility, pod
selection, provisional schedule creation, and then final
schedule creation. The solution of each phase is essen-
tially used to restrict the feasible space for the subse-
quent phases. Figure 5 illustrates how each phase relates
to the others. Each phase is solved with an appropriate
mathematical program. We now summarize these phases,
referring the reader to Appendix A for further details.

1. In the feasibility phase, we determine a feasible
number of picks by process path and storage zone and
do so by selecting a suitable subset of available ship-
ments. In this phase, the picks in each process path are
restricted to those with due times not later than a due-
time threshold. This due-time threshold is initialized
from values taken from an upstream system. In each
iteration of this phase, any process path with picks
lower than its target rate has its threshold adjusted to a

later due time (if there exist orders with a later due
time in that process path) in the next iteration. At each
iteration, a mixed-integer quadratic program (MIQP)
determines the number of picks that will minimize the
sum of squared shortages from the process path target
rates and zone targets on a percentage basis to thereby
minimize shortages in a manner that tends to balance
them (proportionally) across the process paths and
zones. The output of this phase is a reduced pick back-
log that approximately corresponds to the shipments
that are planned to be picked over the next day or so.

2. In the pod-selection phase, we solve a sequence of
MIPs, each generating a set of pods to cover the items
that need to be picked up to a certain due time, approx-
imately satisfying the feasible output of the feasibility
phase. The primary goal is to have a small subset of
pods for subsequent phases, and a secondary goal is to
respect the feasible zone utilizations of the previous
phase. The output of this phase is a nested sequence
of sets of pods: the initial pod set holds inventory
required for all the shipments in the reduced pick back-
log, and the final pod set holds inventory required for
all the shipments in the subset of the reduced pick
backlog with the earliest due times, and each set of
pods is a subset of the previous pod set. Thus, the final
set of pods in the sequence corresponds to the pods
planned to be assigned over the next few hours or so.

3. In the provisional schedule creation phase, we use
a greedy algorithm to select and schedule order ship-
ments to satisfy overall pick requirements (as deter-
mined by the previous two phases), matching them to
the final set of pods in the nested sequence of pod sets
from the pod-selection phase. The goal is to limit the
number of times that a matched pod is used again in a
future matching and avoid a myopic decision at the
expense of future pick efficiency. The output of this
phase is a candidate pick schedule: the shipments that
are planned to be picked in the next 15 minutes or so
(making up the candidate pick window), the specific
units of inventory that fulfill these shipments, and the
pods holding these units.

4. In the final schedule creation phase, we search in
the neighborhood of the candidate pick schedule from
the previous phase by augmenting the selected pods
with a set of pods that makes it feasible to completely
pick any partially scheduled shipment, thus enabling a
different choice of subset of shipments to be completely
versus partially picked. We solve an MIP to determine
a final output of order shipments to be picked next and
from which pod each item in those order shipments
should be picked. This returns the final pick schedule
(along with the corresponding final pick window).

The proposed assignment module then takes these
picks and assigns them to stations. This module has two
goals: guarantee that each station does not experience idle
time and, subject to that, minimize the distance the pods

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
272 INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s)

chosen by the picking module have to travel. To that end,
the assignment problem solves an MIP to minimize the
distance traveled by the pods and give each station at least
a fixed amount of work. When a pick station’s queue of
incoming work runs low, the assignment module assigns
pods (with the associated picks from the pick schedule) to
stations, and the assignment module triggers a rerun of
the picking module to schedule more picks when the
number of picks it has to work with is low.

Trade-off Between Multi-item Order Shipment
Cycle Time and Pile-on
Two important parameters that affect the performance
of our algorithm are the overall size of the pick window

(here, size is measured in terms of minutes of work, that
is, how long it takes for the pick window to be picked)
and how frequently it is updated (how much of the pick
window is picked before it is refreshed). The picking
module takes the pick-window size as an input parame-
ter and returns the pick window as part of the output
of phase 4 as often as required by the update frequency.
Thus, these parameters are not optimized by the picking
module, but both parameters influence the overall
throughput of multi-item order shipments. Items for
such shipments are not necessarily picked all at the same
time or by the same picker, and partially picked ship-
ments occupy space on the order-aggregation wall. If the
multi-item order shipment cycle time is high, shipments

Figure 5. (Color online) The Four Phases of the Picking Algorithm Successively Reduce the Search Space of the Problem

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s) 273

take longer to get completed, and we run a higher risk of
hitting capacity on the wall, causing delays. Selecting a
suitable pick-window size and update frequency offers a
degree of control over cycle time. In this section, we dis-
cuss the trade-off between cycle time and pick efficiency.

Intuitively, there is a trade-off between these two
measures: the more freedom we give to the picking
algorithm, the more efficient we can be with our drives
(and the higher pile-on we can achieve) but the less con-
trol we have over the cycle times of multi-item order
shipments. We propose models that approximate these
measures given some high-level parameters about the
system. Both models are derived by making simplifying
assumptions in a probabilistic framework. In the cycle-
time model, given the size of the pick window and the
frequency with which it is updated, the model outputs
an estimate of the cycle time for a multi-item order ship-
ment containing any specified number of items. This
estimate is given in the form of a closed-form expression.
In the pile-on model, given the size and update fre-
quency of the pick-window and the eligible backlog
size, the model outputs an estimate of the pile-on that
can be attained. This estimate is derived via an iterative
method. Appendix B contains more details on both
models.

Based on these models, we observe that increasing
pick-window size generally increases the pile-on. When
the pick-window size is very small relative to backlog,
we can cherry-pick the shipments from a small number
of pods that contain the most items from the backlog,
resulting in a relatively high pile-on. As we increase
the pick-window size, the opportunity to cherry-pick
becomes more limited because more pods need to be
selected. As the pick-window size continues to increase,
we are allowed a greater degree of freedom that increases
the average number of items from the backlog in a typical
pod, which provides a more sustainable improvement
of pile-on. In most situations, the pick-window size is in
the region where increasing pick-window size would
increase pile-on. On the other hand, increasing the pick-
window size increases cycle time because, once the first
unit of an order shipment has been picked, it is less likely
for the other units of that order shipment to be picked
when there is more freedom to select other units.

Therefore, in general, we face a trade-off between
pile-on and cycle time, and we want to understand how
the trade-off behaves quantitatively in order to be most
effective operationally. Figure 6 shows an example of
the trade-off that can be achieved.

Based on this analysis, a suitable pick-window size
and update frequency were selected as the standard
parameters with which to run the algorithm. This also
potentially allows us to use pick-window size as a lever
to control the trade-off according to the situation. For
example, during peak seasons, we are more likely to set
a larger pick-window size to attain a high pile-on in

order to sustain a high pick rate and accept larger cycle
times. On the other hand, during off-peak seasons, a
lower pile-on might be sufficient to sustain the required
pick rate, and we can set a smaller pick-window size to
reduce cycle time and speed up order completion time.

Implementation
A major challenge in implementing this algorithm was
that it had to enter into production in existing, opera-
tional AR FCs, and any issues, whether bugs in the soft-
ware code or unexpectedly poor performance of the
algorithm, would immediately bottleneck the opera-
tions of those FCs, possibly leaving them unable to clear
their backlogs and impacting their performance for days
after. Those managing these FCs would understandably
be concerned about their ability to fulfill customer demand
should anything go awry. As with the implementation of
any new system, there were risks that things could go
wrong, and the stakes were high. Therefore, we had to do
all we could to identify and eliminate any potential issues
prior to rolling out the algorithm to production and earn
the confidence and buy-in from those managing picking
operations on the ground, who would be most impacted
by the change.

We first designed and prototyped the new AR picking
algorithm within a simulation environment and con-
ducted extensive testing. This was completed in 2015.
Then, we ported this implementation to production
with the help of our technology teams. The picking
technology team implemented a flexible architecture for
the AR pick scheduling space, breaking down the prob-
lem into multiple microservices, enabling separation of
responsibilities and parallel development. A team of
specialists across multiple disciplines, including engi-
neering and research, tested the software at a handful of

Figure 6. (Color online) There Is a Trade-off Between the
Cycle Time of Multi-item Order Shipments and Pile-on as
Shown in This Example Graph (Cycle Times Are Normalized;
Pile-on Numbers Are Shown Relative to One but Without
Scale)

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
274 INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s)

FCs in 2016. The team took on a goal of running incre-
mental pilots at the end of two-week sprints, allowing
early and parallel discovery of any production issues,
incrementally gaining confidence in the ability of the
new algorithm to meet the business objective of picking
the right items within their due times and also optimiz-
ing for picking efficiency.

Because our objective was to provide incremental vali-
dated progress for our business, we only activated the
picking module at first. The largest subproblem (corre-
sponding to the final schedule creation phase described
in Appendix A), which is solved multiple times during
this phase, has on the order of 50,000 variables, most of
which are binary, and 500,000 constraints for a typical
AR FC. So we initially focused on satisfying the run-time
requirement for creating pick schedules, which is on the
order of one minute. By 2017, the teams were confident
that the implemented code was ready for production
use.

Subsequently, we deployed the production imple-
mentation of the picking module in several AR FCs to
collect data on its performance. To this end, for several
months, we monitored the key performance metrics and
the metrics related to system requirements for order ful-
fillment. In this phase, we validated our experimental
results obtained during the design of the algorithm.

After long discussions with the business and technology
teams responsible for warehouse operations and software,
we also came to an agreement to exclude the assignment
module from the production implementation and con-
tinue using the legacy assignment algorithm. Technology
teams argued that the picking module already allowed us
to capture a significant benefit and would still work well
with the legacy assignment algorithm, avoiding the devel-
opmental risks of overhauling both systems at the same
time. Thus, only the picking module was implemented
though this decision may be revisited in the future if the
relative benefits and costs of implementing the assignment
module change.

The models built for quantifying the trade-off between
cycle time and pile-on were used to help understand
what a good pick-window size should be. Business
teams chose a pick-window size that corresponded to a
suitable point on the Pareto curve with expected cycle
time and pile-on numbers that were in line with business
requirements. Currently, pick-window size is set as a
static parameter, unchanged from its initial setting, but
there is the potential to dynamically adjust it.

In production, the picking algorithm runs in the back-
ground without user intervention approximately every
minute. The scope of our production implementation
has been incrementally widened, and it has been opera-
tional in all (more than 50) Amazon AR FCs in North
America since 2017.

From the successful implementation of the redesigned
picking module, a major lesson learned is the tremendous

value unlocked from having multiple teams working
together. The redesigned algorithm worked well, but
merely coming up with a new algorithm would not
have been enough to achieve the impact this work
eventually had. It took the combined effort of multiple
teams, including but not limited to the research team
designing the algorithm, the software development team
planning and coding the incremental pilots, and the busi-
ness team making the case to invest resources into the
project, for the algorithm to make it to production and
achieve the efficiency gains projected from computational
experiments.

Benefits
The deployment of the redesigned robotic picking algo-
rithm reduced the drive distance per pick by 62% in pro-
duction compared with the legacy algorithm, having no
negative impact on operational efficiency. This improve-
ment reduced the number of drives required in AR FCs
by 31%, which, in turn, amounted to half a billion dollars
in direct savings from the algorithm over the period
between 2017, when the algorithm was first imple-
mented in production, and 2020, when the savings were
evaluated. This savings figure was evaluated purely
based on the cost savings from the drives, and the
annual savings from the algorithm are projected to
increase in scale as the number of FCs grows. Moreover,
the reduction in drive distance resulted in a correspond-
ing 31% reduction in drive energy usage though neither
the financial nor environmental impact of this has been
quantified.

The success of the use of robots in AR FCs at Amazon
is now celebrated, but at the time of Amazon’s acquisi-
tion of Kiva, it was not yet clear that the robotic picking
system would work sufficiently well at the scale and
context required in Amazon to justify the capital invest-
ment involved in setting up each AR FC. A huge indirect
contribution of this algorithmic work was to convince
Amazon that robotic picking could scale well to our FCs.
This work helped drive Amazon toward making AR
FCs the standard for new FCs, storing, as mentioned ear-
lier, 40% more inventory than non-AR FCs (Amazon
2020). Equivalently, this means building AR FCs required
29% (because 1� 1

1:4 � 0:29) less area allocated to storing
inventory, compared with building non-AR FCs that
were able to hold the same amount of inventory.

More broadly, these results contribute toward a vision
of seamless collaboration between associates and robots
and serve as evidence of the value of robots to everyone
throughout Amazon, ensuring the success of the 2012
Kiva acquisition and encouraging further investment in
(and adoption of) robotics. Since the introduction of
robots, Amazon has added more than 300,000 full-time
jobs globally (Amazon 2018), including jobs necessitated
by the use of robots, such as positions in IT, technicians

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s) 275

to service and maintain the robots, and even new career
paths such as flow control specialists (Amazon 2019).
Furthermore, the AR FCs often employ more people
than non-AR FCs because of the higher volume of inven-
tory managed in these buildings as well as the variety of
jobs supporting these robotic systems.

Conclusions
This work is a clear illustration of the synergy between
technology and OR. The new technology—robotic drives
and pods, together with the software system that con-
trolled the system robots—can improve the efficiency of
FCs but only up to a certain point. In order to sustain
improvements in operational efficiency as the operations
scaled up, OR was necessary to model and optimize for
key performance metrics using advanced algorithms so
that the system was tailored to the strengths of the new
technology. The robotic picking system was able to per-
form closer to its full potential when paired with algo-
rithms designed using OR techniques to effectively utilize
its strengths. OR was used not only in the picking algo-
rithm, but also in the preliminary study done to reveal the
opportunity of improvement and ability to capture it.
This gave Amazon the confidence to devote more resour-
ces to redesigning the picking algorithm. In sum, by ena-
bling new technology to scale effectively, OR has played a
key role in ushering in a new era of fulfillment technology,
enabling humans and robots to work together efficiently.

Acknowledgments
We acknowledge the leadership, technology, and business
teams from Amazon involved in this work without which
the research would not have had the impact it has had.
We also thank Editor-in-Chief Michael F. Gorman as well
as the anonymous associate editor and reviewers for their
extremely helpful suggestions to significantly improve the
paper during the review process. We are grateful for the sup-
port and encouragement of John Milne and Steve Graves,
who provided feedback on earlier versions of the paper.

Appendix A. Details of the Picking Module
In this appendix, we describe the picking module in more
technical detail. We begin by describing a formulation of the
problem that we ideally want to solve. Because this formula-
tion turns out to be intractable at the required scale, we then
describe the decomposition of the problem into phases.

The goal of the picking module is to select the pick sched-
ule that maximizes the overall pile-on and keeps the pile-on
consistently high in each time period (say, within 80% of the
overall pile-on), subject to the various operational con-
straints. We start with some notation:
• K: set of SKUs
• Z: set of zones
• T: set of time periods in time horizon
• Pz: set of pods in zone z with P � ∪z∈ZPz
• I: set of process paths

• Di: set of due times for process path i up to a suitable due
time d̄i
• Ji: set of shipments in process path i with J �∪i∈IJi
• Ji(d): set of shipments in Ji with due time at most d
• apk0: initial units of inventory for SKU k on pod p
• bjk0: initial units of SKU k for shipment j in backlog
• czt: available zone capacity in zone z in period t
• [fit, f̄ it]: allowed target rate range for process path i in

period t with nominal pick rate fit
• hidt: pick throughput allocations for process path i and

due time d in period t
• git: partial picking allowance for process path i in

period T
• d̄i: latest due time for process path i
We can assume that most, if not all, of the backlog has to be

picked by the end of the time horizon (approximately a day or
so). Therefore, in place of maximizing pile-on, we may reason-
ably minimize the number of times a pod is selected in a
period. Similarly, we may constrain the number of pods
selected in each time period to be at least 80% of the average
number of pods selected in each time period, weighted by
P

i∈Ifit. The variables in the model are as follows:
• xpt: binary variable indicating whether pod p is selected

in period t
• wjt: binary variable indicating whether shipment j is

assigned to the pick window in period t
• ypkt: number of units of SKU k to be picked from pod p in

period t
• sjkt: number of units of SKU k not picked for shipment j

by period t if j is selected into the pick window in period t
(zero otherwise)
• apkt: units of inventory for SKU k on pod p in period t
• bjkt: units of SKU k for shipment j in backlog in period t
The formulation can then be written as

min
X

p∈P, t∈T
xpt (A.1)

subject to (A.2)
X

p∈P
xpt ≥ 0:8

P
i∈I fit

P
i∈I, τ∈T fiτ

X

p∈P, τ∈T
xpτ ∀t ∈ T, (A.3)

X

j∈J
bjktwjt�

X

j∈J
sjkt �

X

p∈P
ypkt ∀k ∈K, t∈T, (A.4)

X

k∈K
sjkt ≤

X

k∈K
bjkt� 1

 !

wjt ∀j∈ J,t∈T, (A.5)
X

j∈J
sjkt ≤

X

p∈P
apkt ∀k ∈K, t∈T, (A.6)

ypkt ≤ apktxpt ∀k ∈K,p∈P, t∈T, (A.7)
X

p∈Pz,k∈K
ypkt ≤ czt ∀z∈Z, t∈T, (A.8)

X

j∈Ji

sjkt ≤ git ∀i ∈ I,t∈T, (A.9)

fit ≤
X

k∈K, j∈Ji

bjktwjt� sjkt
� �

≤ f̄it ∀i ∈ I,t∈T, (A.10)

hidt≤
X

k∈K,j∈Ji(d)
bjktwjt� sjkt
� �

∀i∈ I,d∈Di,t∈T, (A.11)

apkt� apk,t�1�ypk,t�1

∀k∈K,p∈P,t∈T, with ypk0�0,
(A.12)

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
276 INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s)

bjkt�bjk,t�1(1�wj,t�1)+sjk,t�1

∀j∈ J,k∈K,t∈T, with wj0� sjk0�0,
(A.13)

0≤ypkt≤ apkt ∀k∈K,p∈P,t∈T, (A.14)
0≤ sjkt≤bjkt ∀k∈K, j∈ J,t∈T, (A.15)
wjt ∈{0,1} ∀j∈ J,t∈T, (A.16)
xpt ∈{0,1} ∀p∈P,t∈T: (A.17)

Unfortunately, this formulation proves too large to be practi-
cal at the required scale because of the large number of pods
and shipments that need to be considered. Therefore, we
propose a decomposition of the problem that aims to solve
the same problem over a reduced search space. As previ-
ously illustrated in Figure 5, each phase successively reduces
the search space as follows: phase 1 restricts the pick backlog
to that which should be picked over the next day or so; phase
2 structures the reduced backlog from phase 1 into nested
subsets and selects nested subsets of pods to cover these
nested backlogs; phase 3 considers the smallest pod set from
phase 2 (approximately corresponding to pods that are
planned to be used in the next few hours) and selects ship-
ments that are fulfilled by units picked from these pods, pro-
ducing a provisional pick schedule for the next 15 minutes
or so; finally, phase 4 uses the provisional pick schedule
from phase 3 to constrain the search space as it solves a mod-
ification of the original problem.

We are now ready to discuss the phases in more detail.
Phase 1, the feasibility phase, considers the backlog and the
desired number of picks in order to determine a suitable
restriction of the backlog that still allows a feasible number
of picks by process path and storage zone. It does this by
solving an MIQP to try to balance each process path and
zone, minimizing the sum of squared shortages from their
targets on a percentage (i.e., proportional to their target
quantities) basis. Each process path is initially restricted to
units with due times before some threshold. If any process
path does not have sufficient units in the reduced backlog,
its threshold is moved later and the MIQP is resolved. This is
repeated until all process paths have sufficient units to meet
their target rates or have no more available units in the back-
log. The additional notation used for the MIQP is as follows:
• JP: set of shipments that are currently partially picked
• JB

i : set of shipments in backlog for process path i with
due time at most d̄i with JB �∪i∈IJB

i
• apk: units of inventory for SKU k on pod p at start of cur-

rent time period
• bjk: units of SKU k for shipment j in backlog at start of cur-

rent time period
• cz: available zone capacity in zone z during current time

period
• fi: target rate for process path i during current time

period
• gi: partial picking allowance for process path i
• d̄i: latest due time for process path i

The variables in the MIQP are as follows:
• wj: binary variable indicating whether shipment j is

selected into the reduced pick backlog
• ypk: number of units of SKU k to be picked from pod p
• uj: binary variable indicating whether shipment j is parti-

ally but not completely picked

• sjk: number of units of SKU k not picked for shipment j
• ri: target rate down-scaling factor for process path i
• qz: zone capacity downscaling factor for zone z

The MIQP can then be written as

min
X

i∈K
1 � ri()

2
+
X

z∈Z
1 � qz
� �2 (A.18)

subject to (A.19)
X

j∈JB

bjkwj �
X

j∈JB

sjk �
X

p∈P
ypk ∀k ∈ K, (A.20)

X

k∈K
sjk ≤

X

j∈K
bjk � 1

0

@

1

Auj ∀j ∈ JB, (A.21)

X

j∈JB
i

uj ≤ gi ∀i ∈ I, (A.22)

X

k∈K, p∈Pz

ypk � czqz ∀z ∈ Z, (A.23)

X

k∈K, j∈JB
i

bjkwj �
X

j∈JB
i

sjk � firi ∀i ∈ I, (A.24)

0 ≤ ypk ≤ apk ∀k ∈ K, p ∈ P, (A.25)
X

p∈P
ypk +

X

j∈JB

sjk ≤
X

p∈P
apk ∀k ∈ K, (A.26)

0 ≤ sjk ≤ bjk ∀k ∈ K, j ∈ JB, (A.27)
0 ≤ ri ≤ 1 ∀i ∈ I, (A.28)
0 ≤ qz ≤ 1 ∀z ∈ Z, (A.29)
wj � 1 ∀j ∈ JP, (A.30)
wj ∈ {0, 1} ∀j ∈ JB, (A.31)
xp ∈ {0, 1} ∀p ∈ P: (A.32)

This phase returns a reduced pick backlog B̄ indicated by the
values of wj in the MIQP solution, and only shipments from
B̄ are considered in subsequent phases. Furthermore, it
returns zone capacity utilization rates αz (given by the value
of qz in the solution) that we can realistically manage to
achieve.

In phase 2, the pod-selection phase, we find a collection of
pods to cover the items that need to be picked from B̄,
approximately satisfying the output of the feasibility phase.
The goal is to have a small subset of pods for subsequent
phases. An initial set cover problem using pods to cover
units is solved using an MIP over the reduced backlog result-
ing from the feasibility phase. The primary objective of the
set covering is to minimize the number of pods selected, and
a secondary goal is to come close to the zone utilizations of
the previous phase. A sequence of set cover problems is then
solved, each generating a set of pods to cover the items that
need to be picked with due time before a given threshold.
This due-time threshold is brought forward in time with
each subsequent problem solved, and the set of pods is
restricted to be a subset of the solution from the previous
problem in the sequence, thus producing a sequence of
nested subsets of pods. The initial set cover problem uses the
following additional notation:
• P̂: set of pods already in current pick window or en route

to pick station
• JiB̄ : set of shipments in reduced backlog for process path i

with due time at most d̄i with JB̄ � ∪i∈IJB̄
i

� �
∪ JP

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s) 277

• µz: penalty per unit of workload deficit in zone z
The variables in the initial set cover problem are as follows:
• xp: binary variable indicating whether pod p is selected in

the pod cover
• yzk: units of SKU k to be picked from zone z
• lz: units of workload deficit in zone z

The initial set cover problem can then be written as

min
X

p∈P
xp +

X

z∈Z
µzlz (A.33)

subject to (A.34)
X

p∈Pz

apkxp ≥ yzk ∀z ∈ Z, k ∈ K, (A.35)

X

z∈Z
yzk �

X

j∈JB̄ bjk

∀k ∈ K, (A.36)

X

k∈K
yzk + lz ≥ αz

X

k∈K, j∈JB̄

bjk ∀z ∈ Z, (A.37)

lz ≥ 0 ∀z ∈ Z, (A.38)
yzk ≥ 0 ∀z ∈ Z, k ∈ K, (A.39)
xp � 1 ∀p ∈ P̂, (A.40)
xp ∈ {0, 1} ∀p ∈ P: (A.41)

This returns a pod cover P∗ (given by the values of xp in the
solution) that holds sufficient inventory for the shipments in
B̄. Next, we solve a sequence of set cover problems, each
time considering a smaller subset of the reduced backlog
(based on due times) and constraining the feasible set of pods
to be a subset of the solution to the previous set cover problem,
starting with P∗. The notation used in each set cover problem in
the sequence is as follows:
• d: the latest due time considered in this set cover prob-

lem; we move d earlier each time we proceed to the next
problem in the sequence
• Pnext

d : set of pods that was the output of the previous set
cover problem in the sequence (the first problem has Pnext

d � P∗)
• JB̄ (d): set of shipments in reduced backlog with due time

at most d
There is only one variable in each set cover problem in the

sequence: xp, the indicator variable for whether pod p ∈ P∗ is
selected in the pod cover. Each problem can be formulated
as follows:

min
X

z∈Z,p∈Pz

1
αz

xp (A.42)

subject to (A.43)
X

p∈P
apkxp ≥

X

j∈JB̄ (d)

bjk ∀k ∈ K, (A.44)

xp � 1 ∀p ∈ P̂, (A.45)
xp � 0 ∀p ∉ Pnext

d , (A.46)
xp ∈ {0, 1} ∀p ∈ P: (A.47)

The output of this phase is a nested sequence of pod sets P∗d
that are planned to be picked to fulfill shipments from the
reduced backlog at varying time horizons. Thus, if the smallest
due time considered in the sequence of set cover problems is
d � d, then we have Pd

∗, the set of pods that we plan to use in
the near future (say, in the next few hours) to cover JB̄ (d), the
subset of B̄ that we plan to pick in the next few hours.

In phase 3, the provisional schedule creation phase, we
select shipments from JB̄ (d) and match them to pods from Pd

∗.
The goal is to select a pick window and schedule that limits
the number of times that a selected pod needs to be used
again in a future time period. To do so, suppose that, for
each SKU k from each shipment j, we plan to pick yjk units,
and these units are to be picked from pods Pselected. We
define the deficiency πk of a SKU k to be the remaining units
of k required in the reduced backlog B̄ minus the available
inventory of pods that have not yet been selected:

πk �
X

j∈B̄

bjk � yjk
� �

�
X

p∈P∗\Pselected

apk: (A.48)

This can be interpreted as the number of units of this SKU
that should be picked from pods selected so as to avoid
being forced to pick that SKU from one of these pods again
in the future (we may assume that the total number of units
for any SKU in the backlog does not exceed available inven-
tory). A positive deficiency implies that a previously selected
pod has to be selected again at some point in the future.
Therefore, we should aim to pick units from pods in such a
way as to reduce the deficiency to zero or less. At the same
time, we also want to avoid picking more than the deficiency
to avoid being overly greedy and having a high pile-on now
at the expense of future pile-on. Therefore, if we are able to
have πk(t) � 0 ∀k, t, then we can avoid greediness in the pick
schedule by picking just the right amount from each pod so
that the pod is no longer needed in the rest of the schedule,
helping to achieve a stable pile-on over time.

All shipments are given three scores: based on how much
they reduce the deficiency, whether they can be picked from
an independent pod (pods that cover whole shipments
only—these are desirable pods, but we also want to avoid
selecting too many of them now and leaving too few for
future periods), and what fraction of the shipment has been
picked previously. A greedy algorithm is run to select a col-
lection of pods that cover the most preferred shipments, and
the shipments are ranked according to the appropriate score,
depending on which score is most relevant at the time based
on the state of the backlog and which pods and shipments
the algorithm has previously selected. One complication is
to ensure that this greedy approach respects the workload
allocated to each zone, but for simplicity, we omit how this is
handled by the algorithm. The output of this phase is a provi-
sional pick schedule: the set of shipments Jprov with units in the
pick window (units planned to be picked over the next 15
minutes or so), and the set of pods Pprov that covers these units.

In phase 4, the final schedule creation phase, we search in
the neighborhood of the solution from the previous phase to
determine a final output of order shipments to be picked
next and from which pod each item in those order shipments
should be picked. We augment the pod collection Pprov from
the provisional schedule creation phase with the smallest
set of pods from P∗ that allows us to complete all partially
picked shipments in Jprov, giving us more freedom to choose
which subset of shipments to only partially pick and which
to completely pick. Then, we solve an MIP to select pods
from this augmented collection of pods PM∗ and shipments
from the backlog to minimize total deficiency. This is essen-
tially the full problem we want to solve in the picking

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
278 INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s)

module, but in this fourth phase, we select from among the
smaller set of pods determined by the previous phases. The
additional notation used in the phase 4 MIP is as follows:
• PM∗

z : considered set of pods in zone z with PM∗ � ∪z∈ZPM∗
z

determined as described
• Jprov

i : subset of Jprov in process path i
• JM

i : set of shipments in process path i considered in phase
4 with JM

i � Jprov
i ∪ JB̄

i , JM � ∪i∈IJM
i

• JM
i (d): set of shipments in JM

i with due time at most d
The variables in the model are as follows:
• xp: binary variable indicating whether pod p is selected
• wj: binary variable indicating whether shipment j is

selected into the pick window
• ypk: number of units of SKU k to be picked from pod p
• sjk: number of units of SKU k not picked for shipment j
• πk: deficiency of SKU k

The formulation can then be written as

min
X

k∈K
πk (A.49)

subject to (A.50)
X

j∈JM

bjkwj �
X

j∈JM

sjk �
X

p∈PM∗
ypk ∀k ∈ K, (A.51)

X

k∈K
sjk ≤

X

k∈K
bjk � 1

 !

wj ∀j ∈ JM, (A.52)
X

j∈JM

sjk ≤
X

p∈PM∗
apk ∀k ∈ K, (A.53)

ypk ≤ apkxp ∀k ∈ K, p ∈ PM∗ , (A.54)
X

p∈PM∗
z

ypk ≤ cz ∀z ∈ Z, (A.55)

X

j∈JM
i

sjk ≤ gi ∀i ∈ I, (A.56)

fi ≤
X

k∈K, j∈JM
i

bjkwj � sjk
� �

≤ f̄i ∀i ∈ I, (A.57)

hid ≤
X

k∈K, j∈JM
i (d)

bjkwj � sjk
� �

∀i ∈ I, d ∈ Di, (A.58)

πk≥
X

j∈JM

bjk(1�wj)�
X

p∈PM∗
apk(1�xp)+

X

j∈JM

sjk

∀k∈K, (A.59)
πk≥0 ∀k∈K, (A.60)
0≤ypk≤ apk ∀k∈K,p∈PM∗ , (A.61)

0≤ sjk≤bjk ∀k∈K, j∈ JM, (A.62)

wj ∈{0,1} ∀j∈ JM, (A.63)
xp ∈{0,1} ∀p∈PM∗ : (A.64)

The output of this phase is then the final pick schedule: the set of
shipments with units in the pick window, the set of pods from
which these units should be picked, and the number of units of
each SKU to be picked from each pod for each shipment.

Appendix B. Pile-on and Cycle-Time Models
A description of both the pile-on and cycle-time models is
given in this appendix. Using these two models in conjunction
allows us to quantitatively estimate the trade-off between pile-
on and cycle time when changing the pick-window size and

update frequency. Here, we measure pick-window size by the
length of time it takes to completely pick everything in the pick
window given a constant pick rate.

B.1. Pile-on Model
The pile-on model estimates the pile-on that can be achieved
given pick-window size and update frequency, number of
pods, size of backlog, size of backlog by priority levels (based
on due time), and required picks by priority levels. It begins
with an initial pile-on estimate and then, assuming that all units
are uniformly randomly distributed among each of the pods,
computes the expected number of pods needed to cover enough
units to replenish the pick window. This gives an expected
pile-on for the entire pick window, which we use as the pile-
on estimate for the next iteration. We iterate until the pile-on
converges, and we take the limit as the final expected pile-on.

In this model, we assume that we have a pick-window size
of n minutes, planned to be picked at a uniform rate of η�units
per minute. Thus, the pick window contains N � nη�units.
After Nα�units have been picked, the pick window is replen-
ished up to size N, selecting from an eligible backlog of size B
located in γ�pods. We assume that some proportion Bα�of the
backlog is new and could potentially be already covered by
the pods previously selected to cover the N(1� α) units
remaining in the pick window. We assume that all units are
uniformly randomly distributed among the pods. We initial-
ize the system with the remaining N(1� α) units covered by
γN(1�α) pods, and we want to understand the expected pile-
on in such a system. In practice, the model needs to handle
the additional complication that varying due times in the
backlog reduces the degree of freedom to select units, but for
simplicity, we omit that part of the model.

First, we define a few functions. Suppose we have χ�units
that are uniformly randomly distributed among γ�pods, and
we want to compute F(χ,ρ,γ), the expected number of these
units covered by a fixed set of ρ�pods. Then, we have
F(χ,ρ,γ) � χρ=γ.

Next, suppose that we have to pick χ�units from a selection
of β�units that are uniformly randomly distributed among γ�
pods, and we want to estimate the probability φξ(χ,β,γ) that
ξ�of these γ�pods are sufficient to cover χ�units. The number
of units covered by a given subset of ξ�pods can be modeled
as a Bin(β,ξ=γ) random variable, which can be approxi-
mated as a N(βξ=γ,βξ(γ� ξ)=γ2) random variable. The
probability that this given subset of ξ�pods covers the suffi-
cient number of units is then approximated by

ψξ(χ,β,γ) � P Z ≥
χ� β ξγ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

β ξγ
γ�ξ
γ

q

2

6
4

3

7
5,

where Z is the standard normal variable. But there are γ
ξ

� �

possible subsets of ξ�pods, so if we make the approximation
that whether each subset covers the required units is inde-
pendent of each other, then we have φξ(χ,β,γ) � 1�

(1� ψξ(χ,β,γ))
γ
ξ

� �

. Computationally, we further approximate
γ
ξ

� �

by γe=ξ
� �ξ

=
ffiffiffiffiffiffiffiffiffi
2πξ
√� �

.

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s) 279

Finally, given χ�units required from β�units uniformly ran-
domly distributed among γ�pods, the expected number of
pods G(χ,β,γ) required to cover these units can be approxi-
mated by G(χ,β,γ) �min(

Pγ
ξ�0(1� φξ(χ,β,γ)),χ), using the

complementary cumulative distribution function formula
for the expectation of a discrete random variable and the fact
that no more than χ�pods are needed to cover χ�units.

Now we are ready to consider the expected pile-on.
1. At the time of replenishing the pick window, we are left

with N(1 � α) units in the pick window covered by γN(1�α)
pods.

2. We consider how many pods we need to cover the
required Nα�units needed to replenish the pick window.

3. NewUnitsCovered �min(F(BBα,γN(1�α),γ), Nα) of the
backlog are units that are new to the backlog and already cov-
ered by the γN(1�α) pods.

4. This leaves RemainingUnits �Nα �NewUnitsCovered
to be covered.

5. This requires AdditionalPods � G(RemainingUnits, B�
NewUnitsCovered,γ� γN(1�α)) additional pods.

6. Therefore, we have expected pile-on

π �
N

γN(1�α) +AdditionalPods :

7. Iterating and replacing γN(1�α) by N(1 � α)=π�in each
iteration, we converge to an expected pile-on.

In practice, accounting for varying due times complicates
the way we compute π�in each iteration.

B.2. Cycle-Time Model
The cycle-time model estimates the cycle time by order ship-
ment size (number of items in the order shipment) given
pick-window size and update frequency. The model assumes
the following dynamics. The pick window starts with the num-
ber of items that can be picked over the pick-window size
given a fixed constant pick rate. Items are picked according to
this pick rate with the next item to be picked chosen uniformly
at random from the remaining items in the pick window and
independent of past picks. When the time comes for the pick
window to be updated (after a constant time has passed based
on the update frequency), unpicked items in the pick window
remain in the pick window, and new items are added to bring
it up to the original size. Items belonging to the same order
shipment always enter the pick window at the same time.
Based on these dynamics, we derive a closed-form expression
for the expected cycle time for any order shipment size.

More concretely, we define the target size of the pick win-
dow to be the time taken to complete picking, n minutes.
According to the dynamics described, the pick time of a unit
is independently and uniformly distributed over the target
window size, but if it is not picked in the first nα�minutes, in
which α ∈ (0, 1] is the window update frequency, then the
window is replenished up to its target size and the n minute
period is reset. Therefore, each item is picked in the Xth
nα-minute period, where X ~ Geo(α), and the pick time of
each item is (X� 1)nα+Y, where Y ~ U[0, nα] is independ-
ent of X.

Let Zm
(u) be the time of the uth pick of a shipment of size m.

We wish to compute the expected time between the (n� 1) th

and nth pick for a shipment of size m given by

λm
u � E Zm

(u) � Zm
(u�1)

h i
: (B.1)

We note that

λm
u � λ

m�1
u�1 ∀m ≥ 2, 3 ≤ u ≤ m, (B.2)

so it suffices to compute λm
2 for all m. Conditioning on how

many of the m items are picked in the first nα-minute period,
we get the following:

λm
2 � (1� α)

mλm
2 +mα(1� α)m�1nαE[W]

+
Xm

v�2

m
v

� �

αv(1� α)m�v
µv,m

2 , (B.3)

where W is the number of periods separating the first and
second pick and

µv,m
2 � E Zm

(2) � Zm
(1)
�
�Zm
(v) ≤ nα < Zm

(v+1)

h i
(B.4)

is the expected time between the first two picks of a ship-
ment of size m given that exactly v of them are picked in the
first nα-minute period.

Using the memoryless property of the geometric distribu-
tion, W ~ Geo(1� (1� α)m�1

), so

E[W] � 1
1� (1� α)m�1 : (B.5)

Using the fact that the uth order statistic of v uniformly dis-
tributed random variables follows a Beta(u, v+ 1� u) distri-
bution, we have

µv,m
2 � nα 2

v+ 1� nα 1
v+ 1 � nα 1

v+ 1 : (B.6)

Now, we have

λm
2 �

nα
1� (1�α)m

qα(1�α)m�1

1� (1�α)m�1+
Xm

v�2

m
v

� �

αv(1�α)m�v 1
v+1

" #

:

(B.7)
Because

Xm+1

v�0

m + 1
v

� �

αv(1 � α)m+1�v
� 1, (B.8)

we can also write this as

λm
2 �

nα
1� (1� α)m

mα(1� α)m�1

1� (1� α)m�1 +
1� (1� α)m+1

α(m+ 1)

"

� (1� α)m �m
2 α(1� α)

m�1
�

: (B.9)

This gives a closed-form solution. From this, we can obtain
the expected time between any two consecutive picks λm

u �

λm�u+2
2 and total cycle time Γm �

Pm
u�2 λ

m
u .

References
Amazon (2018) Bots by the numbers: Facts and figures about

robotics at Amazon. Accessed February 6, 2020, https://blog.
aboutamazon.com/innovation/bots-by-the-numbers-facts-and-
figures-about-robotics-at-amazon.

Amazon (2019) New robots, new jobs. Accessed January 24, 2022,
https://www.aboutamazon.com/news/operations/new-robots-
new-jobs.

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
280 INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s)

https://blog.aboutamazon.com/innovation/bots-by-the-numbers-facts-and-figures-about-robotics-at-amazon
https://blog.aboutamazon.com/innovation/bots-by-the-numbers-facts-and-figures-about-robotics-at-amazon
https://blog.aboutamazon.com/innovation/bots-by-the-numbers-facts-and-figures-about-robotics-at-amazon
https://www.aboutamazon.com/news/operations/new-robots-new-jobs
https://www.aboutamazon.com/news/operations/new-robots-new-jobs

Amazon (2020) What robots do (and don’t do) at Amazon fulfillment
centers. Accessed February 6, 2020, https://www.aboutamazon.
co.uk/amazon-fulfilment/what-robots-do-and-dont-do-at-amazon-
fulfilment-centres.

Azadeh K, De Koster R, Roy D (2019) Robotized and automated
warehouse systems: Review and recent developments. Trans-
portation Sci. 53(4):917–945.

Boysen N, Briskorn D, Emde S (2017) Parts-to-picker based order
processing in a rack-moving mobile robots environment. Eur. J.
Oper. Res. 262(2):550–562.

Boysen N, de Koster R, Weidinger F (2019) Warehousing in the
e-commerce era: A survey. Eur. J. Oper. Res. 277(2):396–411.

Cezik T, Graves SC, Liu A (2021) Velocity-based stowage policy for
semi-automated fulfillment system. Preprint, submitted Febru-
ary 18, https://dx.doi.org/10.2139/ssrn.3784731.

De Koster R, Le Duc T, Roodbergen KJ (2007) Design and control of
warehouse order picking: A literature review. Eur. J. Oper. Res.
182(2):481–501.

Enright J, Wurman PR (2011) Optimization and coordinated autonomy
in mobile fulfillment systems. Proc. 25th AAAI Conf. Artificial Intell.
(ACM, New York), 33–38.

Gagliardi JP, Renaud J, Ruiz A (2012) Models for automated storage
and retrieval systems: A literature review. Internat. J. Production
Res. 50(24):7110–7125.

Gallien J, Weber T (2010) To wave or not to wave? Order release
policies for warehouses with an automated sorter. Manufactur-
ing Service Oper. Management 12(4):642–662.

Gharehgozli A, Zaerpour N (2020) Robot scheduling for pod
retrieval in a robotic mobile fulfillment system. Transportation
Res. Part E Logist. Transportation Rev. 142:102087.

Lamballais T, Roy D, De Koster M (2017) Estimating performance in a
robotic mobile fulfillment system. Eur. J. Oper. Res. 256(3): 976–990.

Lamballais T, Roy D, De Koster R (2019) Inventory allocation in
robotic mobile fulfillment systems. IISE Trans. 52(1):1–22.

Merschformann M, Lamballais T, de Koster M, Suhl L (2019) Deci-
sion rules for robotic mobile fulfillment systems. Oper. Res. Per-
spect. 6(C):100128.

Qin H, Xiao J, Ge D, Xin L, Goa J, He S, Hu H, Carlsson JG (2022)
JD.com: Operations research algorithms drive intelligent ware-
house robots to work. INFORMS J. Appl. Anal. 52(1):42–55.

Qiu L, Hsu WJ, Huang SY, Wang H (2002) Scheduling and routing
algorithms for AGVS: A survey. Internat. J. Production Res.
40(3):745–760.

Rimélé A, Gamache M, Gendreau M, Grangier P, Rousseau LM
(2021) Robotic mobile fulfillment systems: A mathematical
modelling framework for e-commerce applications. Internat. J.
Production Res. 60(11):3589–3605.

Roodbergen KJ, Vis I (2009) A survey of literature on automated
storage and retrieval systems. Eur. J. Oper. Res. 194(2):343–362.

Valle CA, Beasley JE (2021) Order allocation, rack allocation and
rack sequencing for pickers in a mobile rack environment. Com-
put. Oper. Res. 125:105090.

van Gils T, Ramaekers K, Caris A, de Koster RB (2018) Designing
efficient order picking systems by combining planning prob-
lems: State-of-the-art classification and review. Eur. J. Oper. Res.
267(1):1–15.

Vis I (2006) Survey of research in the design and control of auto-
mated guided vehicle systems. Eur. J. Oper. Res. 170(3):677–709.

Wang Z, Sheu JB, Teo CP, Xue G (2021) Robot scheduling for
mobile-rack warehouses: Human–robot coordinated order pick-
ing systems. Production Oper. Management 31(1):98–116.

Weidinger F, Boysen N, Briskorn D (2018) Storage assignment with
rack-moving mobile robots in Kiva warehouses. Transportation
Sci. 52(6):1479–1495.

Wurman PR, D’Andrea R, Mountz M (2008) Coordinating hundreds
of cooperative, autonomous vehicles in warehouses. AI Maga-
zine 29(1):9.

Yuan R, Cezik T, Graves SC (2018) Stowage decisions in multi-zone
storage systems. Internat. J. Production Res. 56(1–2):333–343.

Yuan R, Cezik T, Graves SC (2019) Velocity-based storage assign-
ment in semi-automated storage systems. Production Oper. Man-
agement 28(2):354–373.

Zou B, Gong YY, Xu X, Yuan Z (2017) Assignment rules in robotic
mobile fulfilment systems for online retailers. Internat. J. Produc-
tion Res. 55(20):6175–6192.

Verification Letter
Jeetu Mirchandani, Director, Software Development, Amazon
Fulfillment Technology, Amazon.com, 410 Terry Avenue North,
Seattle, Washington 98109, writes:

“I write this letter in support of the submission titled
‘Algorithm for Robotic Picking in Amazon Fulfillment Centers
Enables Humans and Robots to Work Together Effectively’ to
the INFORMS Journal on Applied Analytics.

“Since its founding in 1994, Amazon.com has grown from
an online bookseller to a global retail company. As its customer
base grew, inventory volume increased, and the network
vastly expanded. As a result, many teams at Amazon had to
create solutions that would improve the overall customer expe-
rience and benefits of shopping with Amazon, such as Prime
and one-day shipping.

“Fulfillment centers (FCs) serve as one of the most critical
elements in the supply chain as it is here where inventory is
stored and customer orders are picked, packed, and shipped.
Quickly outgrowing its first FC (Jeff Bezos’ garage), Amazon
had to expand to larger buildings where more inventory could
be stored to meet the growing customer base. In parallel, the
e-commerce industry was booming, which put more pressure
on Amazon to implement innovative solutions within its FCs
in order to scale and continue to meet the demands of the
global network. One of the most impactful changes for its ful-
fillment centers was the 2012 acquisition of Kiva Systems, now
known as Amazon Robotics (AR), which led to the introduc-
tion of robotics.

“This robotic technology enabled a semiautomated storage
system—robots and teams of associates working alongside one
another to efficiently and safely fulfill customer orders. Rather
than Amazon’s associates going to the products to pick a cus-
tomer order or stow new inventory, robots bring shelves of
inventory to the associates who are either picking or stowing
items. This new system brought multiple advantages to Ama-
zon’s buildings. By robotically bringing pods of inventory
to pick stations, associates were able to reduce the time they
spent walking from one shelf to another and redirect that time
to more value-added tasks, such as problem detection and IT
management. The new design of the storage system also
allowed Amazon to stow 40% more inventory in its buildings
due to the compact nature of how its shelving pods are filled
and stored. This robotic system became extremely efficient and
allowed Amazon employees to more quickly move items
throughout the FCs, helping speed up delivery times for
customers.

“None of this happened overnight. For the new technology
to work in Amazon.com FCs, teams first had to customize the
system and software to scale to the needs of the buildings and
Amazon’s growing network. Teams in both Seattle and Boston
took on this challenge. By 2014 Amazon’s first robotic FC was

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s) 281

https://www.aboutamazon.co.uk/amazon-fulfilment/what-robots-do-and-dont-do-at-amazon-fulfilment-centres
https://www.aboutamazon.co.uk/amazon-fulfilment/what-robots-do-and-dont-do-at-amazon-fulfilment-centres
https://www.aboutamazon.co.uk/amazon-fulfilment/what-robots-do-and-dont-do-at-amazon-fulfilment-centres
https://dx.doi.org/10.2139/ssrn.3784731

up and running. Initial results and associate feedback on the
new process was positive. However, Amazon saw room for
improvement and adjustments had to be made to deliver
results at a global scale.

“In 2015, the modeling and optimization team at Amazon.-
com redesigned the robotic picking algorithm so that robotic
drives could more efficiently bring items to associates. The
new algorithms minimized the average distance the robots had
to travel per item picked. Not only did the algorithms reduce
travel distance, they also reduced idle time between pod inter-
actions, another benefit to the associates. After simulating the
algorithms, the teams implemented them in the software run-
ning the FCs, which has since been introduced to more than 50
robotic fulfillment centers.

“Results were far better than expected. The distance traveled
by drives per unit picked was reduced by 62% without opera-
tional impact. This improvement reduced the number of drives
AR FCs required by 31%, which in turn amounted to half a bil-
lion dollars in savings to Amazon. Moreover, the algorithm
increased the likelihood an associate would be able to pick
multiple items from one storage pod, minimizing travel time
and pod turnover. The redesigned algorithm supported the
overall Amazon Robotic system, which enables seamless col-
laboration between associates and robots, creating more jobs
and career options for associates. The system’s ability to scale
and capture the advantages of robotic technology and pod-
based storage convinced Amazon executives to make AR FCs
the standard for new FCs, allowing Amazon to reduce the stor-
age footprint compared with what would have been required
if only non-AR FCs were constructed.

“The financial results spoke for themselves and served as
evidence of the value of robots to everyone throughout Ama-
zon, ensuring the success of the 2012 Kiva acquisition and
encouraging further investment in robotics. Since the introduc-
tion of robots, Amazon has added more than a million new

jobs globally, including jobs that were created because of the
use of robots, such as positions in IT as well as roles necessary
for the service and maintenance of the robots. Furthermore, the
AR FCs often employ more people due to the higher volume of
inventory managed in these buildings, as well as the variety of
jobs supporting these robotic systems.

“With a focus on algorithmic efficiency and effectiveness,
operations research has been able to shorten the overall develop-
ment time necessary for wide scale deployment, while increas-
ing the overall performance of a critical robotic system used
within Amazon. The algorithmic improvements have enabled
sustained improvements in operational efficiency and have
played a key role in accelerating Amazon’s fulfillment opera-
tions, enabling humans and robots to work together efficiently.”

Russell Allgor is the chief scientist for Amazon.com, where he
leads a team of mathematical modeling experts to improve the effi-
ciency of Amazon’s operations using data analysis, modeling, simu-
lation, and optimization. Ideas and algorithms developed by Russell
and his team have returned billions of dollars to Amazon’s bottom
line. Before joining Amazon.com, he worked in applied R&D for
Bayer AG in Germany. Russell holds a PhD in chemical engineering
from MIT and a BS from Princeton University.

Tolga Cezik is a senior principal research scientist at Amazon.com,
where his research focuses on process design and algorithms for
fulfillment center operations and transportation systems. He has pre-
viously worked as a researcher at Bell Labs, Université de Montréal,
and Tilburg University. Tolga holds a PhD in operations research
from Columbia University and a BS in industrial engineering and
operations research from Middle East Technical University.

Daniel Chen is a research scientist in the modeling and optimi-
zation team at Amazon.com, where his research focuses on improv-
ing the effectiveness of fulfillment operations. He also holds a
concurrent appointment as a research scientist at the Institute of
High Performance Computing in Singapore. Daniel holds a PhD in
operations research from MIT and a BA in mathematics from the
University of Cambridge.

Allgor, Cezik, and Chen: Robotic Picking Algorithm in Amazon Fulfillment Centers
282 INFORMS Journal on Applied Analytics, 2023, vol. 53, no. 4, pp. 266–282, © 2023 The Author(s)

	Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively
	Introduction
	Robotic Picking
	Challenges and Opportunity for Improvement
	Related Work
	Robotic Picking Algorithm
	Redesigning the Robotic Picking Algorithm
	Implementation
	Benefits
	Conclusions
	Verification Letter

