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Abstract. Improving fulfillment efficiency is critical for long-term sustainability of online 
grocery retailing. In this paper, we study reducing order fulfillment cost by order consoli
dation. Motivated by the observation that a significant percentage of buyers place multiple 
orders within a short time interval, we propose a scheme that attempts to consolidate such 
“multiorders” to reduce the number of parcels and hence, the shipping cost. At the same 
time, it cannot significantly disturb the existing order fulfillment process or undermine the 
customer service level. Successful execution of the scheme requires a prediction of multior
der probabilities and a control policy that selectively prioritizes order processing. For the 
prediction task, we formulate a binary classification problem and use machine-learning 
algorithms to predict in real time the probability of a multiorder. For the control task, our 
proposal is to hold arriving orders in a temporary order pool for potential consolidation 
and to determine the release timing by a dynamic program. The proposed solution is esti
mated to capture 92.8% of all the multiorders at the cost of holding the orders for about 
20.3 minutes on average. This translates to more than 10 million U.S. dollars of order fulfill
ment cost saving annually.

History: This paper was refereed. 

Keywords: order fulfillment • order consolidation • online grocery retailing • data-driven operations

Introduction
Online grocery retailing has become an increasingly 
more important battleground for all major online and 
traditional retailers (Griffin 2018). Yet, when compared 
with other more mature sectors, such as apparel and 
electronics, online grocery retailing is still far behind in 
terms of the percentage of spending done online (Saun
ders 2018). One critical reason lies in the unique chal
lenge it is facing. On one hand, grocery retailing has 
low gross profit per order because both the average 
value per order and the gross margin are relatively 
low. On the other hand, order fulfillment cost is high 
because a typical grocery order consists of a larger 
number of items, which are often heavy in weight (e.g., 
drinks, detergents), bulky in volume (e.g., toilet paper), 
or demand special care (e.g., cold storage for ice cream). 
In addition, grocery buyers expect fast (same day and 
next day in our context) and to-door delivery.

The imbalance between low gross profit and high ful
fillment cost makes order fulfillment efficiency the key 
to the short-term survival and long-term sustainability 
of online grocery retailing. Industrial practitioners and 
academic researchers have attempted to approach the 

problem from various perspectives: (1) strategic loca
tion of fulfillment centers (FCs) so as to strike a balance 
between the need to be decentralized and close to end 
customers to save delivery costs and the benefit of 
inventory pooling via centralization (Lim et al. 2017); 
(2) optimized scheme of matching item inventory and 
FCs so as to minimize the chance of order splitting, the 
situation when the items in an order have to be fulfilled 
from more than one FC and in multiple parcels, or to 
minimize return-related costs (He et al. 2019); and (3) 
dynamic assignment of orders to FCs based on real- 
time inventory information and demand prediction (Xu 
et al. 2009). See chapter 10 of Fernie and Sparks (2009) 
for a comprehensive survey of the logistics challenges. 
We approach the problem from a more operational per
spective and study schemes of consolidating orders into 
fewer parcels to reduce fulfillment cost.

Business Context and Fulfillment Process
Our business context is an anonymous online grocery 
retailer, referred to as TMS, based in China. (In this 
paper, we provide visual illustrations and numerical 
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summaries and statistics based on real data we obtain 
from TMS. Because of concerns of confidentiality, we 
cannot publicize all the data in detail. We regretfully 
censor all the absolute numbers and only report the 
order of magnitude, relative proportions, and relative 
patterns. For the figures, we have to remove the labels 
and ticks on the axis wherever sensitive data are in 
place.) The market positioning of TMS is a one-stop 
online supermarket (with hundreds of thousands of 
stock-keeping units) with fast delivery (same day or 
next day). Different from online marketplaces and plat
forms. such as taobao.com or tmall.com, TMS is a fully 
integrated retailer that manages its own marketing and 
sales activities on the demand side and procurement, 
inventory, and supply chain operations on the supply 
side as well. Warehousing and delivery to end custo
mers are outsourced to a third-party logistics service 
provider, which charges TMS a fixed cost per year and 
a variable cost per parcel delivered.

Figure 1 provides an illustration of the order fulfill
ment process. There are three major parts from left to 
right: sales front end, fulfillment gateway, and logis
tics back end. The fulfillment process starts when a 
customer order arrives from the sales front end after 
payment, confirmation, etc. Before we introduce order 
fulfillment consolidation, the fulfillment gateway is 
mainly responsible for exceptions detection and FC 
assignment. Exceptions may involve wrong address, 
risk of fraud, virtual products that do not need physi
cal fulfillment, and various ad hoc business rules. 

Those orders with exception will be redirected into 
another process that is irrelevant to the context of this 
paper. In the next step, the remaining orders are 
assigned to one or more FCs. Here, one needs to solve 
an assignment/matching problem to minimize the 
total fulfillment cost, subject to inventory availability 
constraints. Note that it is common to split a customer 
order with multiple items into two or more parcels, 
referred to as fulfillment orders in Figure 1, because 
not all items are available in one single FC. The follow
ing steps, namely multiorder prediction, order pool, 
and release control as marked in bold in Figure 1, are 
the key components of our proposed order fulfillment 
consolidation and will be explained in detail later. The 
output of the fulfillment gateway is the fulfillment 
orders, which are linked to the customer orders in a 
many-to-one fashion because of order splitting (it 
becomes many to many after order consolidation). 
The fulfillment orders are then executed by the FCs in 
the logistics back end. Execution includes item pick
ing, parcel packing and labeling, and then, delivery to 
the customers.

Among the three parts of the fulfillment process, 
TMS manages the sales front end and fulfillment gate
way, whereas the logistics service provider runs the 
logistics back end and charges TMS based on the num
ber of fulfillment orders or equivalently, parcels. For 
TMS to reduce its fulfillment cost, one critical task is to 
minimize the number of fulfillment orders sent to the 
logistics back end.

Figure 1. The Order Fulfillment Process Shows How a Customer Order Received in the Sales Front End Goes Through the 
Fulfillment Gateway and Reaches the Fulfillment Center in the Logistics Back End 
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Order Fulfillment Consolidation
The starting point of this project is the observation 
that we may combine multiple customer orders into 
one fulfillment order and have them fulfilled in one 
parcel. This (at least) halves the shipping cost paid 
to the logistics service provider because the charge is 
on a per-parcel basis. The scheme itself is not an inno
vation but a rather common practice (Amazon.com 
2019).

We use the term multiorder to refer to the collection of 
customer orders that can be fulfilled together. More for
mally, a multiorder is a set of two or more orders that 
satisfy the following criteria: the orders (1) are placed 
by the same buyer, (2) are placed on the same day, (3) 
are of the same delivery address, (4) are assigned to the 
same FC, and (5) satisfy the free shipping requirements. 
(For nonfree-shipping orders, because the customer 
has paid for shipping, consolidation is not considered 
to avoid potential public relation or legal issues.)

One simple solution to capture the benefits is to offer 
a grace period, say half an hour, within which buyers 
can modify their orders. This essentially allows the 
buyers themselves to merge their multiorders and 
hence, to some extent, solve our problem (see Figure 3
in the Data Exploration section for a numerical estima
tion for different lengths of grace period). However, 
this way also implies that all the orders will be put on 
hold throughout the grace period just because a small 
percentage of them might be modified. Such a scheme 
of universally delaying all orders is not acceptable in 
our context because of the same-day/next-day delivery 
promise.

To exploit the benefit of order fulfillment consolida
tion while minimizing the disturbance imposed on 
order processing, we need a solution that can identify 
orders with high multiorder probability and selectively 
hold them for an optimized period of time. We propose 
a data-driven solution that integrates machine learn
ing and dynamic optimization. The solution, which is 
deployed in the fulfillment gateway, is designed to pre
dict multiorder probabilities for all incoming orders in 
real time and selectively hold them in a temporary 
order pool before releasing to the downstream FC. 
The delay to an order imposed by the solution is opti
mized to maximize the chance for the order to be hit by 
another follow-up order and to make a multiorder, sub
ject to a set of operational constraints. JD.com also has a 
similar practice of holding orders, although the objec
tive is to deal with order cancellations (Medium.com 
2018).

By and large, the analytics involve two major tasks: 
prediction and control. The prediction task is for iden
tification of potential multiorders; upon receiving a 
new order, we need to predict in real time the proba
bility of whether the same buyer will place one or 
more orders later in the day that satisfy the previously 

defined multiorder criteria, which is referred to as a 
multiorder hit. This task corresponds to the multiorder 
prediction step in Figure 1. Next, given the probability 
predictions, the control task is concerned about devel
oping a policy to selectively hold orders in the pool to 
maximize multiorder hits while minimizing the influ
ences brought to the outbound order flow and the 
downstream order fulfillment process. This corresponds 
to release control in Figure 1.

The proposed solution is back tested on the real data 
of TMS. Given a constraint of a maximum 30 minutes 
of holding time in the order pool, our solution is able 
to capture 92.8% of all the multiorders with an average 
holding time of 20.3 minutes. The estimated fulfill
ment cost saving is more that 10 million U.S. dollars 
per year.

The rest of the paper is organized as follows. In next 
section, we present data exploration and visualization, 
with which we justify our model assumptions and sim
plifications. The prediction algorithms are introduced 
in the Prediction Tasks section, and the control problem 
formulation and our proposed solution are described 
in detail in the Control Task section. We evaluate the 
performance in the Performance Evaluation section 
and conclude the paper in Conclusion. Mathematical 
formulations and approximation solution are relegated 
to the appendix.

Data Exploration
In this section, we conduct exploratory analysis on the 
data we obtain from TMS. The analysis shall help us 
construct simplifying assumptions in our model and 
justifications to our proposed solution.

First, we try to estimate the potential cost saving by 
order fulfillment consolidation. Figure 2 plots a daily 
summary of the proportion of orders that can be consol
idated (the line plot) together with the total number of 
orders in a month (the bar chart). On average, around 
8% of all daily orders (in the magnitude of millions at 
TMS) can be consolidated, and the proportion can be as 
high as 17% during days with major promotional cam
paigns, such as days 1 and 7 in Figure 2. If we manage 
to identify and consolidate all the multiorders, we shall 
save fulfillment costs by 4% on average. Supposing the 
delivery cost of a parcel is 1 dollar (because we cannot 
disclose the actual cost information, we provide a lower 
bound here) and there are 1 million orders per day, it 
implies an annual cost saving of more than 15 million 
dollars.

Next, we zoom in on one typical day (without major 
promotional campaigns or marketing activities), re
ferred to as day A. One question that we need a con
crete answer for is about the multiorder structure; that 
is, what is the distribution of the number of orders 
made by a buyer on a day? The proportion of buyers 
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who place a single order is 96%, and 4% place multiple 
orders. Among the 4%, we find that the majority of 
multiorders are double orders (79%) and triple orders 
(10%), and the remaining 11% of customers place four 
or more orders. In the following analysis, we make a 
simplifying assumption and focus only on double 
orders. That is, if a buyer places three orders, the third 
one is ignored. If there are four orders, they are consid
ered two multiorders.

Figure 3 summarizes the empirical distribution (fre
quency histogram and cumulative distribution in five- 
minute time intervals) of interarrival time between the 
two adjacent orders of a multiorder on day A. By defi
nition, the actual interarrival time can be as long as 
24 hours. Here, for clearer visualization, we only plot 
the distribution in the interval [0, 120] minutes, which 
covers about 80% of all instances. If we further reduce 
the interval to 60 or 30 minutes long, the proportions 

Figure 2. The Total Numbers of Orders (Bars) and the Proportions of Orders That Can Be Consolidated (Lines) Show the Poten
tial Savings of Order Consolidation 
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Figure 3. The Order Interarrival Time (Truncated at 120 Minutes) Follows an Exponential Distribution 

0.0

0.1

0.2

0.3

0.4

0.00

0.25

0.50

0.75

1.00

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

Minute

P
ro

po
rt

io
n

C
um

ulative P
roportion

Frequency Histogram Cumulative Distribution

Wang et al.: Data-Driven Order Fulfillment Consolidation 
214 INFORMS Journal on Applied Analytics, 2024, vol. 54, no. 3, pp. 211–221, © 2023 INFORMS 



become 75% and 65%, respectively. This provides a 
quick indication on the trade-off between how long the 
orders need to be held and how many multiorders can 
be potentially captured.

The plot also suggests that the interarrival time 
can be reasonably approximated by an exponential 
distribution or a mixture of multiple exponential dis
tributions. Later in our analysis, we shall treat the 
interarrivals as exponential and rely on the distribu
tion’s memoryless property; the multiorder probabil
ity remains constant regardless of how long an order 
has stayed in the order pool.

The order arrival pattern at one of the FCs on day A 
can be visualized in Figure 4. The nonstationarity of the 
arrivals is apparent and not surprising, yet attention 
should be paid to the spikes at 0, 9, and 10 hours. These 
spikes are driven by small-scale but frequent flash sales 
that have been scheduled to start at those time points. 
Simple myopic control policies will suffer from these 
shocks imposed on the arrivals. A reasonable solution 
should incorporate such flash sales into its predictions 
and control the order pool size with the upcoming 
shocks in mind.

Prediction Tasks
In this section, we introduce the multiorder prediction 
algorithm. In addition, the control task also requires 
characterizing the uncertainty about the intensity of 
incoming order flow. This calls for another prediction 
algorithm to predict the upcoming order arrivals in the 
rest of the day. The two prediction tasks are described 
in the following subsections.

Multiorder Prediction
This part is a relatively standard binary classification 
problem, with the target Y variable being, for a given 
order, whether there will be a multiorder hit by the end 
of the day (labeled as positive and negative, respectively). 

Note that here the time horizon for multiorder predic
tion is set to the whole day. Apparently, delaying the 
fulfillment of an order for a whole day is not always 
practical. Later in the control task, we shall introduce 
parameter L, the maximum amount of time in the 
order pool, which is to be adjusted based on the actual 
business setting.

Because of concerns about business secrets, we are 
not able to fully disclose the complete set of features (X 
variables) and their relative importance in the model. A 
selected subset of representative features is categorized 
in groups and presented in the following. 

1. Buyer basic features: member score, membership 
level, purchase-power level

2. Buyer statistical features: number of coupons on 
hand, shop visit frequency, page view count, purchase 
frequency, number of items added to shopping cart but 
removed later

3. Buyer multiorder features: order cancellation fre
quency with TMS, multiorder count with TMS

4. Order basic features: item count, total order value, 
total quantity, total number of categories

5. Order statistical features: total average daily sales 
of items in the order

6. Real-time features: real-time activities such as clicks, 
add to cart, and voucher redemption

The corresponding data are retrieved from TMS’s 
database on a daily basis. Because of the sheer size of 
the data (millions of orders per day) and imbalance of 
positive and negative samples (recall that, on average, 
there are about 4% positive multiorder instances and 
96% negative ones), we construct the training data set 
with 500,000 positive samples and 2,000,000 negative 
samples, randomly sampled from the orders in the most 
recent six weeks.

With the training data set, we experiment with a 
number of predictive machine-learning models, includ
ing gradient-boosted decision trees (GBDTs) (Chen and 
Guestrin 2016), Transformer (Vaswani et al. 2017), and 

Figure 4. The Number of Order Arrivals at an FC (Data in Five-Minute Intervals) Exhibits a Nonstationary Pattern 
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BERT (Devlin et al. 2019), and a number of feature com
binations based on the groups of features listed previ
ously. Given the nature of this paper, we have skipped 
a lengthy description of the models’ setup and imple
mentations and provide a brief summary in Table 1.

The output of the classification algorithms includes 
the multiorder probability and the label of “positive” or 
“negative.” Because the following control task consumes 
only the multiorder probability, the prediction perfor
mance is measured by out-of-sample area under the 
receiver operating characteristic curve (AUC), which is a 
number between zero and one, with one being perfect 
prediction. The result is also listed in Table 1. We find 
that as we employ more powerful models (in terms of 
both the structural complexity and the sheer number of 
parameters) and introduce more relevant features, the 
AUC can be further improved.

The model eventually deployed is V2. This is because 
of another constraint imposed; the deployed model 
must be able to complete multiorder prediction for an 
order within 40 milliseconds. Otherwise, the fulfillment 
gateway will treat it as time-out and release the order 
immediately. As shown in Table 1, this constraint effec
tively rules out all the Transformer- and BERT-based 
models. Even for GBDT, we have to adjust the hyper
parameters to speed it up. The final setup is presented 
in Table 2. The final model of choice is the result of bal
ancing prediction accuracy and execution latency.

Order Flow Prediction
The other important input of the follow-up control task 
is real-time prediction of the number of orders for the 
rest of the day. As will be described in more detail in 
the section Control Task, we discretize time into five- 
minute intervals when applying the control algorithm. 

Therefore, we will need to predict the number of orders 
for all five-minute intervals in the rest of the day.

We rely on an existing real-time prediction system at 
TMS that has been built for other purposes. It generates 
hourly predictions and updates every five minutes. 
The algorithm is a GBDT-based regression using fea
tures such as historical hourly order arrivals and reven
ues, current day order arrivals and revenues so far, last 
five-minute orders and revenues, and information on 
promotional activities (such as flash sales).

We estimate the historical proportion of orders in 
each five-minute interval within each hour of a day and 
apply the proportions to the hourly prediction to obtain 
five-minute predictions.

Control Task
In the following, we first describe the problem setup of 
the control task. Its detailed mathematical formulation 
and solution procedures are relegated to the appendix. 
Then, we introduce two other policies that serve as 
benchmarks for comparison.

Problem Setup
We formulate a Markov decision process-based model 
that decides which orders to release from the pool at a 
given time and a given state of the system. The problem 
is a discrete-time, finite-horizon, dynamic stochastic con
trol problem. The planning horizon is one day, which 
is discretized into 288 five-minute periods, denoted by 
t � 1, 2, : : : , T. The system state is characterized by the 
orders held in the pool, their associated multiorder prob
abilities, and their stay so far.

Objective. Recall that the ultimate goal of the control 
task is to maximize multiorder hits. Whether a hit will 
be eventually captured depends on how long the order 
stays in the pool and its associated multiorder probabil
ity. Because of this observation, we construct the objec
tive function to be the total stay of the orders in the 
pool, weighted by their multiorder probabilities.

Constraints. The optimal solution will be trivial if with
out constraints—for example, just holding all the orders 
as long as possible, which is clearly not appealing in 

Table 1. We Experiment with Various Prediction Models and Evaluate Their Performance in Terms of AUC and Latency

Model Description AUC Latency range (milliseconds)

V0 GBDT Baseline GBDT model using feature groups 1, 3, and 4 0.745 [5, 15]
V1 GBDT with extended features V0 + feature groups 2 and 5 0.756 [5, 20]
V2 GBDT with real-time features V1 + feature group 6 0.809 [5, 20]
V3 Transformer Prediction model using Transformer 0.821 [30, 50]
V4 Transformer + feature cross V3 + feature interactions 0.829 [30, 50]
V5 Transformer + resampling V4 + resampling on error-prone data points 0.833 [40, 60]
V6 BERT Item embedding using BERT pretraining 0.841 [60, 100]

Table 2. Hyperparameters Used in the GBDT Model

Hyperparameter Value

Number of trees 100
Learning rate 0.05
Max leaf count 32
Sample ratio 0.8
Feature ratio 0.8
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practice. In our context, various concerns have been 
raised by the managers of TMS, and we translate them 
into the following constraints. 
• Maximum flow constraint. The FC operations im

pose a limit on our outbound fulfillment order flow in 
terms of the maximum number of fulfillment orders 
released from the pool in each period t, denoted by Ft. 
This is to minimize flow disturbance and to accommo
date the existing order-processing capacity schedule. 
(Jointly optimizing the order-processing schedules is 
another interesting problem; this is left to the next stage 
of the project and is not within the scope of this paper.)
• Maximum stay constraint. For each order, there is 

a maximum amount of time in the pool, denoted by L 
(periods).
• Pool size constraint. There should be a cap on the 

total number of orders held in the pool at any time, 
denoted by Ct.
• End-of-horizon constraint. No orders should be 

carried over to the next day; the pool has to be emptied 
by the end of the day.

We shall incorporate these constraints in our model 
in terms of either constraints or dualized penalty terms 
in the objective function.

Mathematical Formulation and 
Solution Procedures
The problem is formulated as a dynamic program (DP). 
Considering all the complications and implementation 
requirements, we develop a way to simplify the state 
space and propose an approximation that solves the 
linear programming (LP) relaxation of the original DP 
on a rolling basis. Given the technical nature of this 
part, we relegate the details to the appendix.

Benchmark Policies
To better understand the impact of the prediction and 
control tasks in isolation, we evaluate two benchmark 
models.

We first consider a simple threshold policy that 
serves as a lower-bound benchmark. The idea is to fully 
utilize the output of the multiorder probability predic
tion but to replace the optimal control part with an 
easy-to-obtain and easy-to-implement heuristic rule. 
This way, we can conduct a comparison between the 
benchmark and our proposed solution and evaluate the 
marginal contribution of solving the optimal control 
problem. The heuristic rule works as follows; for each 
order received, if its multiorder probability is larger 
than a threshold p, it goes into the order pool and waits 
for a fixed amount of time τ (unless t+ τ > T). On one 
hand, the heuristic is a generalization of the known 
practice we observed; with p � 0 and τ set to the length 
of the grace period, all orders will be universally held 
for the same amount of time. On the other hand, it can 
be considered a lower bound of our proposed policy 

because it only focuses on the multiorder probability 
and ignores the arrival time of the orders and the flow 
constraints.

An upper-bound policy of our proposed solution is 
to solve the LP relaxation with the actual observation, 
as opposed to the real-time prediction, of order arrivals 
as input. This essentially gets rid of the impact of the 
arrival flow uncertainty and provides us an estimation 
of the performance in the ideal setting.

Performance Evaluation
The proposed solution has been deployed online at 
TMS, together with several other algorithm modules 
that detect malicious orders, potential returns, and 
potential arbitragers. It is hard to decouple our solution 
from the online system and evaluate its performance 
and benefit in isolation. In this section, we present a 
back test of the proposed solution together with the 
benchmark policies on the real data from TMS.

The following constraint parameters are specified by 
the managers of TMS: (1) maximum stay: 30 minutes 
(L� 6 periods), which is decided based on the pattern 
on Figure 3; (2) pool size constraint Ct: 20% of the total 
daily orders for all t (this constraint is never binding in 
our tests); and (3) maximum flow penalty: cF

t is set to 10 
for all t � 1, : : : , 272 and is 100 for t � 273, : : : , 288, which 
is to avoid depleting the pool entirely at the end. We 
are not allowed to disclose Ft, which is the FC’s proces
sing capacity. In this study, we use a set of synthesized 
numbers just for the purpose of illustration. The num
bers are plotted in Figure 5 as dashed lines.

Multiorder probabilities are grouped according to 
the following K� 4 intervals: [0, 0:2), [0:2, 0:5), [0:5, 0:8), 
[0:8, 1], with the corresponding pk being 0:1, 0:35, 0:65, 
0:9. In the threshold policy, τ � 6 and p � 0:15, which 
is manually tuned with reference to the receiver operat
ing characteristic curve of the multiorder prediction 
algorithm.

The key performance indicators (KPIs) specified by 
the management of TMS are (1) multiorder captures, 
measured by the percentage of multiorders captured 
by the algorithm over the total number of multiorders 
within the same time frame (i.e., 30 minutes in our test); 
and (2) average stay in pool, the average time spent in 
the pool. Table 3 lists the KPI we summarized for two 
days, day A being the typical day we study in the Data 
Exploration section and day B being another day with 
major promotional activities.

Not surprisingly, the upper-bound policy, DP with
out uncertainty, dominates our proposed solution in 
both KPIs; it has higher multiorder captures (95.5%) 
and lower average stay (19.4 minutes). The more inter
esting comparison is between the lower-bound thresh
old policy and our solution. We find that the threshold 
policy is better at capturing multiorders (96.7% versus 
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92.8%) but at the cost of a much longer pool stay 
(8.6 minutes or 42% more on day A and 3.2 minutes or 
14% more on day B). The analysis sheds light on the 
trade-off between the two KPIs and provides us with a 
guideline on how to relax the maximum stay constraint. 
If we are able to relax the maximum stay constraint from 

30 minutes to, say, 60 minutes, we can evaluate multior
der captures and average stay in a similar manner.

Another shortcoming of the threshold policy is its 
ignorance of the flow constraints. Figure 5 illustrates the 
outbound order flow (thick blue lines) under the three 
policies described in the previous section together with 

Figure 5. (Color online) The Outbound Order Flows Under the Three Policies Show Different Smoothness 
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Table 3. A Summary of KPIs of the Three Policies for a Typical Day (Day A) and a Day with Major 
Promotion (Day B)

Day

Proportion 
of multiorders 

(within 30 minutes), 
% KPI

Threshold 
policy

DP with 
uncertainty

DP without 
uncertainty

Day A (typical) 3.0 Multiorder captures 96.7% 92.8% 95.5%
Day A (typical) 3.0 Average stay in pool 

(minutes)
28.9 20.3 19.4

Day B (promotion) 6.9 Multiorder captures 93.5% 88.8% 89.2%
Day B (promotion) 6.9 Average stay in pool 

(minutes)
26.3 23.1 22.5
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the inbound order flow (thin black lines), which is the 
same as in Figure 4, and the capacity Ft (dashed lines). 
We observe that the threshold policy (the top plot) 
tries to hold most of the orders (because of the low 
probability threshold that we set) and keep them for 
30 minutes in the pool. Because the policy is myopic, a 
significant surge happens in the last 30 minutes of the 
day, which is because of releasing expiring orders in 
the pool and all new arrivals at the same time. The 
DP-based policies perform better in terms of smooth
ing the outbound flow, especially at the end. Although 
smoothing the flow is not our objective here, one can 
fine-tune the penalty cF

t and achieve a smoother out
bound flow. Our proposed solution (the middle plot), 
suffering from imperfect prediction of future order 
arrivals, has more spikes and fluctuations when com
pared with the policy without arrival uncertainty (the 
bottom plot).

Conclusion
Our analysis has demonstrated the power of analytics. 
Data analysis helps us identify the phenomenon of mul
tiorders and provides an initial estimate of the potential 
benefit, machine learning leverages on the rich data 
about buyers’ past behavior to produce accurate predic
tions of multiorder probabilities and order arrivals, and 
operations research tools convert this information into 
actions that significantly improve business performance 
without violating operational constraints.

Empowered by analytics, the online grocery retailer 
can capture 92.8% of multiorders and reduce its order 
fulfillment cost by 3%, which translates to more than 10 
million dollars per year. A cost reduction by 3%, which 
may not seem significant in some business contexts, 
could determine the survival or bankruptcy of online 
grocery retailers, which often struggle to obtain a posi
tive net profit margin. Moreover, all of this comes at a 
small cost; all the change that we bring to the existing 
order fulfillment process is resequencing the orders 
and an average delay of about 20 minutes.

In addition to the economic savings, there are also 
environmental benefits because of order fulfillment con
solidation. For example, having the items packed in one 
carton box instead of two separate ones helps reduce 
the usage of packing materials. Also, to some extent, it 
reduces the shipping weight and volume, which in turn, 
makes shipping more efficient. A detailed evaluation of 
such carbon emission reduction is conducted in another 
project.

Appendix. Mathematical Formulation and 
Solution Procedures

A.1. Sequence of Events
At the beginning of period t, the existing pool of orders is 
reviewed. Let St denote the initial set of orders in the pool, 
where each order is identified by its arrival time and multiorder 

probability. We can partition the pool set according to the 
orders’ arrival time; that is, St � St, t�L+ ⋯ +St, t�1, where 
St, s, s � t� L, : : : , t� 1 is the set of orders that arrived in 
period s and are still in the pool at the beginning of t. Note 
that because the maximum stay in the pool is L, the oldest 
set of orders includes those that arrived in t�L. We further 
partition each set St, s into K groups based on the orders’ mul
tiorder probabilities. The partition is done according to a set 
of predefined probability intervals. The result is K groups 
of orders; that is, St, s � S1

t, s+ ⋯ +SK
t, s, with the superscript 

denoting the probability group. The multiorder probability 
of an order, or the probability group an order is in, is 
assumed to be constant because of the exponential assump
tion justified in the Data Exploration section.

For tractability, we do not further differentiate orders in the 
same group Sk

t, s and treat them all with the same multiorder 
probability, the middle value of the corresponding probabil
ity interval denoted by pk, where 0 < p1 <⋯< pK < 1. This 
way, the orders can be identified only by their arrival time 
and probability group. Letting Sk

t, s be the number of orders in 
set Sk

t, s, we have matrix St � [Sk
t, s] fully characterize the pool 

state.
Next, a new set of orders I t arrives at the system. Multior

der hits are identified and released immediately. Let ɛk
t, s be 

the number of orders in set Sk
t, s that are hit by multiorders. 

The updated pool state is

S′kt, s � Sk
t, s � ɛ

k
t, s, for s � t� L, : : : , t� 1 (A.1) 

and for all k � 1, : : : , K. On the other hand, those new orders 
that remain, denoted by I ′t , have their multiorder probability 
estimated by the prediction algorithm developed in the Mul
tiorder Prediction section. The same scheme of partition by 
probability can be applied to I ′t—that is, I ′t � I

′1
t + ⋯ +I ′Kt . 

Let I′kt be the number of orders in I ′kt . These orders are then 
merged into the pool. This implies that

S′kt, t � I′kt : (A.2) 

In the following formulation, we refer to St as the initial state 
before multiorder clearance and S′t � [S

′k
t, s], for s � t� L, : : : , t 

and k � 1, : : : , K, as the updated state after clearance.
Given the updated state S′t in period t, the decision is how 

many and which orders from the pool should be released. Let 
Ot � [Ok

t, s], for s � t� L, : : : , t and k � 1, : : : , K, denote the deci
sion variables. It is a matrix of dimension (L+ 1) × K, with 
Ok

t, s being the number of orders that arrived in group k at 
time s and are released at t.

The challenge that lies in the optimization is twofold. The 
first is about how many orders to release in each period so 
that the constraints are not violated. The second is about how 
to prioritize orders when releasing. For example, consider an 
order with a high multiorder probability that has already 
stayed for L� 1 periods in the pool versus a newly arrived 
order with a lower probability. The answer is not obvious 
and may depend on the whole system state.

After releasing the orders, the pool state that will be carried 
to the next period t+ 1 can be updated:

Sk
t+1, s � S′kt, s �Ok

t, s, for s � t� L + 1, : : : , t: (A.3) 
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A.2. Dynamic Program Formulation
To this end, we can write down the dynamic program. Let 
Vt(S′t) be the value function with a given updated state S′t ; 
then, the DP recursion is

Vt(S′t) �max
Ot

(
Xt

s�t�L+1

XK

k�1
pkSk

t+1, s � cF
t

 
Xt

s�t�L

XK

k�1
Ok

t, s � Ft

!

+E[Vt+1(S′t+1)]

)

, (A.4) 

VT+1(·) � 0: (A.5) 

On the right-hand side of Equation (A.4), the first term is the 
incremental benefit of keeping orders in the pool, measured 
by the total number of orders carried to t+ 1, weighted by 
their corresponding multiorder probabilities. The second 
term is the penalty for violating the max flow constraint, with 
cF

t being the per-unit penalty in period t. Here, we choose to 
incorporate the max flow constraint in the objective in order 
to guarantee a feasible solution. The third term is the future 
value-to-go from period t+1 onward. Equation (A.5) is the 
boundary condition.

In addition to the state dynamics (A.1), (A.2), and (A.3), the 
aforementioned recursion is also subject to the following 
constraints. 

Constraint 1 (maximum stay). All existing L-period-old 
orders must be released from the pool (for k � 1, : : : , K):

Ok
t, t�L � S′kt, t�L:

Constraint 2 (pool size). The total orders in the pool at the 
end of t cannot be more than Ct:

Xt

s�t�L+1

XK

k�1
Sk

t+1, s ≤ Ct:

Constraint 3 (end of horizon). The pool must be empty at 
the end of the horizon:

ST+1 � 0:

Constraint 4 (nonnegativity):

St ≥ 0, Ot ≥ 0:

A.3. LP Relaxation
In practice, the aforementioned dynamic program is not tracta
ble because of high dimensionality. We shall employ LP-based 
approximation on a rolling basis (Bertsekas 2012). The main 
idea is that in any period t, given the updated state S′t , we treat 
all the random variables I′t+1, : : : , I′T and ɛt+1, : : : ,ɛT as deter
ministic and replace them with our predictions. The resulting 
problem is deterministic and can be solved efficiently by LP. 
The optimal solution obtained from the LP covers the decisions 
for all the remaining periods t, : : : , T. Yet, we only implement 
Ot for period t. The same process is repeated in the next period 
after updating the system state and future order predictions.

The LP we need to solve in period t can be written as

max
Ot, : : : , OT

XT

τ�t

(
Xτ

s�τ�L+1

XK

k�1
pkSk

τ+1, s � cF
τ

 
Xτ

s�τ�L

XK

k�1
Ok
τ, s � Fτ

!)

,

(A.6) 

subject to the following. 

Constraint 0 (state dynamics). For all τ � t, : : : , T and 
k � 1, : : : , K,

S′kτ, s � Sk
τ, s � ɛ

k
τ, s, for s � τ� L, : : : ,τ� 1,

S′kτ,τ � I′kτ ,

Sk
τ+1, s � S′kτ, s �Ok

τ, s, for s � τ� L+ 1, : : : ,τ:

Constraint 1 (maximum stay). For all τ � t, : : : , T and 
k � 1, : : : , K,

Ok
τ,τ�L � S′kτ,τ�L:

Constraint 2 (pool size). For all τ � t, : : : , T,

Xτ

s�τ�L+1

XK

k�1
Sk
τ+1, s ≤ Cτ:

Constraint 3 (end of horizon).

ST+1 � 0:

Constraint 4 (nonnegativity). For all τ � t, : : : , T,

Sτ ≥ 0, Oτ ≥ 0:

In order to solve the aforementioned LP, we need input on 
I′t+1, : : : , I′T and ɛt+1, : : : ,ɛT. In the section on Order Flow Pre
diction, we have introduced a real-time prediction algorithm. 
The problem is that the granularity of the prediction is not 
enough. From the algorithm, we can only obtain the total 
number of orders in each period τ, namely |Iτ | . To split the 
total number, we estimate the historical percentage of orders 
that are allocated to each probability group k and apply that 
percentage to |Iτ | to obtain Iτ � [I1

τ, : : : , IK
τ ]. Another simplifi

cation is to ignore ɛτ’s and treat them as zero. This is because 
the number of multiorders constitutes only several percent of 
the total orders, which is negligible when compared with the 
prediction error. This way, we can approximate I′τ with Iτ.
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Verification Letter
Tao Fang, Director of Supply Chain Operations, TMall Super
market, Alibaba Group, No. 969 West Wenyi Road, Yuhang, 
District, Hangzhou, China, writes:

“I am writing to testify to the project described in the paper 
titled ‘Data-Driven Order Fulfillment Consolidation for Online 
Grocery Retailing,’ which is being submitted to INFORMS 
Journal on Applied Analytics for review.

“The project started in 2018 at TMall Supermarket (code- 
named TMS in the paper), which is an online grocery retailing 
business of the Alibaba Group. TMall Supermarket serves 
customers all around mainland China, processes more than a 
million orders per day, and has an annual revenue of tens of 
billions RMB. I was in charge of supply chain operations at 
TMall Supermarket and engaged the team of authors from 
Alibaba DChain, a business unit that specializes in providing 
digital solutions for supply chain management, to optimize 
our order fulfillment process to further cut cost.

“The project focused on order fulfillment consolidation. 
Through explorative data analysis, they found promising 
opportunities in consolidating orders so as to save the ship
ping cost paid to our logistics service provider, which charged 
us on a per parcel basis. We started from simple manually 
defined rules; then, the solution evolved into a much more 
complicated but powerful form with machine learning and 
dynamic optimization. To date, the system is still running on 
our order fulfillment system.

“The benefit of the project is straightforward and signifi
cant. In most other initiatives we have pursued to improve 
our supply chain operations, the monetary benefit is often 
hard to evaluate or prove in a counterfactual way. This pro
ject has an easily verifiable benefit: One can calculate how 
many orders could have been consolidated and how many 
were. In addition, for each consolidation, we have a clear 
number on the shipping cost saved. I cannot disclose this spe
cific number, but in total, our estimated savings is around 100 
million RMB per year. This was evaluated in 2019. As our 
business continues to grow, we expect the savings to grow 
proportionally.”

Yang Wang is a data scientist at IDG Capital. This work was 
done when he was a senior algorithm engineer on the Supply Chain 
Fulfillment Team of Alibaba Group. His research interests include 
the combination of operations research, stochastic optimization, 
and large-scale online optimization in the areas of logistics and 
retail industry. He obtained his PhD in electrical engineering from 
Tsinghua University.

Tong Wang is a director at Alibaba Group leading the Supply 
Chain Forecasting Team. Prior to Alibaba, he was an associate profes
sor at the National University of Singapore. His research is on infor
mation and flexibility in supply chain management, with a special 
focus on retail analytics. He obtained his PhD in decision sciences 
from INSEAD, France.

Xiaoqing Wang is a director at Alibaba Group leading the Supply 
Chain Fulfillment and Service Optimization Team. His research inter
ests include the combination of operation research, stochastic optimi
zation, and large-scale online optimization in the areas of logistics and 
retail industry. He obtained his PhD in systems engineering from 
Northeastern University.

Yuming Deng is a director at Alibaba Group leading the Digital 
Supply Chain Department. His research interests are assortment plan
ning, network planning, pricing strategy, forecasting, inventory opti
mization, and simulation-based optimization and its applications. He 
obtained his PhD in operations research and industrial engineering 
from the University of Texas at Austin.

Lei Cao is a senior algorithm engineer on the Supply Planning 
Team of Alibaba Group. His research focuses on inventory manage
ment and revenue management in the retail industry with deep learn
ing, reinforcement learning, and data-driven optimization algorithms. 
He obtained his PhD from the University of the Chinese Academy of 
Sciences.

Wang et al.: Data-Driven Order Fulfillment Consolidation 
INFORMS Journal on Applied Analytics, 2024, vol. 54, no. 3, pp. 211–221, © 2023 INFORMS 221 

https://medium.com/jd-technology-blog/going-the-extra-mile-in-customer-service-how-does-jd-com-make-order-cancellation-so-easy-a00ebc7fd1ee
https://medium.com/jd-technology-blog/going-the-extra-mile-in-customer-service-how-does-jd-com-make-order-cancellation-so-easy-a00ebc7fd1ee
https://medium.com/jd-technology-blog/going-the-extra-mile-in-customer-service-how-does-jd-com-make-order-cancellation-so-easy-a00ebc7fd1ee
https://www.onespace.com/blog/2018/08/online-grocery-food-shopping-statistics/
https://www.onespace.com/blog/2018/08/online-grocery-food-shopping-statistics/

	Data-Driven Order Fulfillment Consolidation for Online Grocery Retailing
	Introduction
	Data Exploration
	Prediction Tasks
	Control Task
	Performance Evaluation
	Conclusion
	Verification Letter


