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Abstract. The rapid evolution of cloud computing technologies has instigated a paradigm shift 
across various traditional industries, with the live streaming sector standing as a compelling 
exemplification of this transformation. Huawei Cloud, which has become an influential player 
in the business-to-business live streaming arena, with its services spanning over 60 countries 
since 2020, is at the forefront of this shift. Amid the flourishing live streaming market, Huawei 
Cloud faces the dual challenge of satisfying the escalating demand, while managing the mount
ing operational costs, predominantly associated with the network bandwidth. To offer premium 
services while minimizing the bandwidth cost, we developed a dynamic traffic allocation sys
tem called GSCO. This system was engineered using an array of operations research methodolo
gies such as continuous optimization, integer programming, graph theory, scheduling, and 
network-flow problem solving, along with state-of-the-art machine learning algorithms. The 
GSCO system has been proven highly effective in cost optimization, reducing network band
width expenses by about 30% and leading to savings exceeding $49.6 million from Q1 2020 to 
Q3 2022. In addition, it has significantly bolstered Huawei Cloud’s market share, amplifying 
peak bandwidth from an initial 1.5 terabits per second (Tbps) to a substantial 16 Tbps.
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Introduction
Cloud computing is an Internet-based computing para
digm that enables faster innovation and economies of 
scale, whereby flexible hardware and software resources, 
such as servers, storage, databases, networking, and ana
lytics, are provided to customers on demand. Cloud com
puting prevailed in the early 2000s because information 
processing could be done more efficiently on a large 
shared pool of computing resources, and most IT compa
nies have embraced it (Marinescu 2022). According to 
Precedence Research (2022), the global cloud comput
ing market is expected to skyrocket to approximately 
$1,614.10 billion by 2030, exhibiting a robust compound 
annual growth rate of 17.43% from 2022. As one of the 
rapidly burgeoning regions in this market, China’s market 
size grew to $48.73 billion in 2020 and the compound 
growth from 2020 to 2025 is predicted to be 26% (Liu 
2022). The accelerated advancement of cloud computing 
technologies has brought about a profound transformation 

across traditional sectors. A notable example that substanti
ates this transformation is the live streaming industry.

Live streaming delivers video in real time and sup
ports applications such as sports broadcasting and inter
active entertainment. Embracing the versatility of the 
Internet and media cloud, the live streaming industry 
has evolved from traditional linear television broadcast
ing systems toward a cloud computing-based model 
(Kleinerman 2022). Essential elements of this paradigm 
include Internet-enabled devices like smartphones, live 
platforms (e.g., YouTube Live, Instagram, and Twich) that 
enable real-time communication and engagement among 
users, and cloud service providers (CSPs) supplying 
essential services like data transmission. The recent ex
plosive adoption of live platforms in online meetings 
and teaching, particularly during the COVID-19 pan
demic, has reinforced the importance of live streaming. 
As of June 2021, live streaming users in China totaled 
638 million, marking an impressive 47% annual increase 
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and comprising 63% of all netizens (iiMedia Research 
2022). In addition, projections suggest that the global 
live streaming industry is set to swell from $59.14 bil
lion in 2021 to over $330 billion by 2030 (Grand View 
Research 2022).

The boom of the cloud computing and live streaming 
market provides both opportunities and challenges for 
CSPs. On the one hand, the robust demand from live 
streaming platform companies to migrate digital assets, 
services, databases, and applications into the cloud has 
created an expansive and lucrative business for CSPs. 
On the other hand, the competitive nature of the market 
has imposed a considerable cost burden on CSPs, which 
are keen to build or rent more and superior cloud infra
structure to confront the escalating demand and height
ened expectations for service quality. Indeed, network 
infrastructure is the foundation of cloud computing. 
CSP expenditures on network bandwidth, which are 
charged by Internet Service Providers (ISPs), comprise 
a significant proportion of the operational cost of their 
live streaming services. In response to the burgeoning 
business requirements and the crucial necessity for 
bandwidth cost control, many CSPs have embarked on 
crafting effective traffic allocation systems to streamline 
the management of live streaming services.

Huawei Cloud
Huawei Cloud stands as a distinctive brand under 
Huawei’s umbrella, catering to the realm of cloud ser
vices. It draws on Huawei’s expertise accumulated 
over three decades in the field of information and com
munications technologies, products, and solutions and 
provides customers with reliable, secure, and sustain
able cloud services. In 2021, Huawei Cloud maintained 
rapid growth with continuous innovation for inclusive 
technologies and constantly improved its cloud service 
capabilities and market share, enabling digital and 
intelligent upgrades across various industries.

According to a Gartner Report (Telecom Review 
2021), Huawei Cloud ascended to the second position 
in the global Infrastructure as a Service (IaaS) market in 
China and the fifth place in the world. At present, Hua
wei Cloud has launched over 220 cloud services along 
with 210 technical solutions (e.g., efficient port schedul
ing, effective flight scheduling, and reliable financial 
data management) and has attracted over 30,000 part
ners worldwide and three million customers from a 
broad range of industries, including media entertain
ment, manufacturing, healthcare, finance, and logistics.

In China, Huawei Cloud serves 80% of China’s top 
50 Internet customers, 12 joint-stock commercial banks, 
and the top five insurance institutions. In addition, its 
services extend to over 30 smart airports, 30 urban rail 
networks, 29 provincial highways, 65% of provincial 
health insurance information platforms, over 30 auto
mobile manufacturers, more than 20 major building 

materials and mining enterprises, and 15 top household 
appliance enterprises. In addition, Huawei Cloud built 
more than 40 industrial Internet innovation centers, 
helping 17,000 manufacturing enterprises in their digi
tal transformation.

Live Streaming at Huawei Cloud
As a leading CSP in China, Huawei Cloud has been 
providing business-to-business (B2B) live streaming 
services since 2020. Its commitment extends to the pro
vision of a complete suite of live streaming services, 
including management, transcoding, content delivery, 
live recording, and security. To support the global 
footprint, Huawei Cloud maintains a live streaming 
network with around 2,800 edge nodes in over 60 
countries, boasting a total bandwidth capacity of up to 
100 terabits per second (Tbps). This network supports 
over 10,000 domains with more than 15 million simul
taneous online end users globally. Huawei Cloud has 
helped several major live platforms swiftly launch 
their live streaming services without building hard
ware stacks.

In the context of end-user experience, Huawei Cloud’s 
technologies deliver high quality of service (QoS) marked 
by a stall frequency (i.e., the rate at which live streaming 
halts) of less than 2.5% and end-to-end latency (i.e., the 
delay between streamers and viewers) under three sec
onds. For example, Huawei Cloud successfully hosted 
live streaming services for a big sports event in China. 
Throughout the event, Huawei Cloud facilitated the 
streaming of over 60 games, with peak bandwidth utili
zation reaching 45 Tbps. Despite the high service pres
sure due to the immense bandwidth demand and 
unpredictable traffic bursts associated with this major 
global event, Huawei Cloud’s live streaming services 
remained stable and reliable, outperforming various 
competitors and earning high praise from a broad range 
of end users.

Saving the Bandwidth Cost
Huawei Cloud’s live streaming business includes two 
main types of infrastructure, that is, the edge nodes and 
the transmission network, which are used to transmit 
data from the source nodes to end users. Currently, only 
a few proportion of these infrastructures are self-built 
by Huawei Cloud, while the substantial majority are 
leased from three major ISPs in China. The success of 
the live streaming business requires not only a high- 
quality service supply but also effective cost control, 
particularly in the face of intense competition for limited 
network resources from other CSPs. In its early stage, 
Huawei Cloud was not in a highly competitive position 
and held a modest market share. Upon analyzing the 
workflow of live streaming services from source nodes 
to end users, we discerned that the bandwidth cost 
could account for more than 70% of total operational 
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expenses. Furthermore, we recognized that the existing 
manual traffic allocation system, heavily reliant on expert 
knowledge, was neither efficient nor sustainable in light 
of the rapid business expansion and increasing complex
ity of the network. Motivated by the goals of reducing 
bandwidth costs and enhancing competitiveness, Huawei 
Cloud embarked on the development of an intelligent, 
automated traffic allocation system intended to eventu
ally supplant the manual system.

However, traffic allocation problems in the context of 
cloud computing’s live streaming business differ from 
those encountered in traditional traffic engineering sce
narios such as logistics management (Lambert et al. 1998, 
Stock and Lambert 2001, Harrison et al. 2019) and trans
portation planning (Magnanti and Wong 1984, Steadie
Seifi et al. 2014). This divergence primarily arises due to 
the intricate nature of the 95th percentile billing scheme 
that charges network usage over a specific period based 
on its 95th percentile and several unique constraints, 
including data package replicability and tight response 
time requirements (typically in the order of millise
conds). Moreover, existing literature offers limited dis
cussion on cost-effective traffic allocation issues within 
cloud computing application scenarios. For example, 
Singh et al. (2021) propose a mixed-integer linear pro
gramming (MILP) model to address the interdomain 
traffic allocation problem. However, their method relies 
on a commercial MILP solver, which requires 15 hours to 
generate a feasible solution. In addition, the scope of their 
study is limited to traffic allocation between data centers 
and three ISPs, a significantly smaller scale compared 
with the complexity of Huawei Cloud’s live streaming 
business. Jalaparti et al. (2016) suggest using the average 
of the top 10% of bandwidth usages as an approximation 
of the 95th percentile utilization. Singh et al. (2021), how
ever, point out that this approximation may not be valid 
for all network connections, particularly when traffic pat
terns fluctuate.

As a trailblazer in cloud technologies, Huawei Cloud 
decided to design innovative and effective traffic alloca
tion algorithms to mitigate the bandwidth cost incurred 
in its live streaming business. Recognizing the potential 
hurdles, the company underscored the paramount im
portance of operations research (OR) techniques and 
sophisticated analytics in making optimal traffic alloca
tion decisions. In a collaborative endeavor, research 
scientists from The University of Hong Kong and Hua
wei Cloud Algorithm Innovation Laboratory developed 
a cost-effective traffic allocation system named GSCO. 
Leveraging system engineering and OR principles, we 
dissected the usage of bandwidth resources across vari
ous stages of live streaming services, ultimately decom
posing the entire process into several distinct modules. 
This structured approach facilitated bandwidth cost 
saving in live streaming by enabling the modular con
sideration of more manageable, solvable subproblems. 

Subsequently, our focus was directed toward each indi
vidual module, formulating efficient algorithms to solve 
the underlying mathematical models. We also scruti
nized the interactive effects among different modules 
and tried to find practical and optimal strategies to 
reduce bandwidth cost from a holistic perspective. 
With the application of various OR techniques, includ
ing but not limited to continuous optimization, integer 
programming, graph theory, scheduling, and machine 
learning, the GSCO system has helped Huawei Cloud 
reduce the bandwidth cost by approximately 30%, lead
ing to a total savings of more than $49.6 million from 
Q1 2020 to Q3 2022. Simultaneously, the GSCO system 
has facilitated an expansion of Huawei Cloud’s peak 
bandwidth from 1.5 Tbps to 16 Tbps, all the while 
ensuring the maintenance of high QoS. We also detailed 
the portability of the GSCO system; for further insights 
into related cloud computing application scenarios, we 
direct interested readers to our previous work (Yang 
et al. 2022).

Problem Description and Challenges
An essential step in designing a traffic allocation system 
involves defining the optimization problem and construct
ing the associated mathematical models. In this section, 
we provide a high-level overview of the cost-effective traf
fic allocation problem encountered in Huawei Cloud’s 
live streaming services. We first detail the hierarchical 
infrastructure underpinning Huawei Cloud’s B2B live 
streaming business. Then, we establish the mathematical 
formulation for this intricate problem.

Hierarchical Infrastructure
The principal components of cloud computing-based 
live streaming include Internet-enabled devices, live 
platforms, and CSPs. For popular live platforms, there 
are millions of online audiences watching various live 
shows simultaneously. The audiences use different 
Internet-enabled devices and connect edge nodes that 
consist of servers or computing clusters managed by 
CSPs through the Internet to access cloud services. Sub
sequently, live streaming content is transmitted from 
live streamers to the audience (or vice versa) through 
specific networks and transmission protocols.

It is important to note that the edge nodes mentioned 
above serve as the interfaces between end users and the 
network. Indeed, the bandwidth cost accrued on edge 
nodes comprises the major bandwidth cost of the whole 
live streaming network (we cannot disclose the exact 
fraction due to confidentiality reasons). This is reasonable 
because of the massive egress and ingress traffic between 
millions of end users and thousands of edge nodes, while 
the same content only needs to be streamed once inside 
the transmission network. Therefore, minimizing the 
bandwidth cost accrued at edge nodes is an overriding 
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step toward reducing the total bandwidth cost, which is 
the objective of our design of the cost-effective traffic 
allocation system. Specifically, the desired traffic alloca
tion system acts as an intermediary, required to forward 
all the access requests from the end users to edge nodes 
in real time for connection establishment, while meeting 
four crucial requirements: 
• Responding to every access request;
• Ensuring the bandwidth capacity of each edge 

node is not exceeded;
• Building connections exclusively over the trans

mission network of the same ISP;
• Accurately fulfilling all specific QoS requirements.
The first requirement is clear; serving customers 

well is Huawei Cloud’s business philosophy, and thus 
the traffic allocation system must handle every access 
request and provide service for every end user. In 
regard to the second requirement, each network con
nection for live streaming between end users and edge 
nodes consumes bandwidth resources, and each edge 
node has the maximum bandwidth threshold con
tracted with ISPs. Hence, to avert extra costs and net
work congestion, the total traffic assigned to each 
edge node should not surpass this bandwidth capac
ity. The third requirement fundamentally reflects the 
practical constraint that inter-ISP connections are not 
allowed. The fourth requirement has two aspects. 
First, it is critical to ensure that services provided 
to customers meet the QoS standards. Furthermore, 
Huawei Cloud enters into various service level agree
ments (SLAs) with live platforms. These SLAs specify 
different QoS requirements and service prices. There
fore, the traffic allocation system should be able to 
build connections accurately according to these cus
tomized QoS requirements.

To meet the four fundamental requirements and 
manage traffic effectively while fully utilizing band
width resources to provide tiered QoS, we have estab
lished a hierarchical infrastructure for live streaming 
services. Access requests are analyzed in three princi
pal dimensions: (1) live platforms, (2) channel groups 
differentiated by popularity, and (3) edge regions. First, 
as we mention above, different SLAs dictate various 
QoS requirements and service prices in the live stream
ing business. Therefore, it is necessary to recognize the 
live platform where an access request originates to pro
vide QoS-differentiated services. Second, different live 
shows have various levels of popularity because the 
audiences’ preferences and the streamers’ reputations 
are diverse. Consequently, we classify all live shows 
into several channel groups based on their popularity 
(i.e., Tier 1 channel, Tier 2 channel, and so on). In gen
eral, channels with higher popularity require superior 
network infrastructure. This popularity-based classifi
cation contributes to the efficient management of vary
ing resources. Third, each access request is labeled with 

ISP and location information, such as “CMCC- 
Beijing,” after recognizing the live platform and chan
nel group, where CMCC is the abbreviation of China 
Mobile Communication Company Limited. ISP informa
tion is necessary for traffic allocation due to the prohi
bition of inter-ISP connections. Location information 
assists in maintaining specific QoS levels, because 
shorter communication distances generally imply 
lower latency and more stable connections. Similarly, 
edge nodes are also identified by ISP and location 
information. Then, the target of cost-effective traffic 
allocation is to establish a matching between edge 
regions and edge nodes through QoS-qualified net
work connections; this matching should minimize the 
total bandwidth cost accrued at all edge nodes under 
the 95th percentile billing scheme, ensuring the band
width capacity of each edge node is not exceeded, and 
all access requests are addressed.

Figure 1 depicts an example of an access request rout
ing on Huawei Cloud’s hierarchical infrastructure. In 
this scenario, there is a client’s access request from a 
Tier 1 channel in Shenzhen using CMCC. Location 
information “Shenzhen” and ISP information “CMCC” 
together constitute an edge region referred to as “CMCC- 
Shenzhen.” To reach an audience that could reside in 
any part of China, this request must be forwarded to an 
edge node that utilizes the matching ISP and can guar
antee acceptable QoS levels, such as the edge node 
labeled “CMCC-Guangzhou.” The figure also illustrates 
why edge nodes like “CMCC-Beijing” and “CUCC- 
Guangzhou” would be unsuitable. The former fails to 
meet the necessary QoS requirements, while the latter 
does not match the original ISP. In addition, if multiple 
feasible edge nodes exist, the traffic allocation system 
should select a connection plan that minimizes the total 
bandwidth cost.

Problem Formulation
According to Huawei Cloud’s hierarchical infrastruc
ture of live streaming services and the 95th percentile 
billing scheme, we can frame the cost-effective traffic 
allocation problem as a generalized assignment prob
lem, where the network topology is a bipartite graph 
with a time dimension. Figure 2 presents an abstract 
depiction of this network topology and offers an exam
ple of the 95th percentile billing scheme. Although we 
have mentioned this billing scheme multiple times, 
we give its explicit definition in Huawei Cloud’s live 
streaming services here: the peak bandwidth usage on 
each edge node is measured every five minutes, and the 
95th percentile of these measurements forms the billed 
bandwidth usage over a billing cycle (e.g., per day, per 
week, or per month). This arrangement indicates that a 
5% window of time slots, corresponding to the top 5% 
of measurements, is free of charge.
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Figure 2. (Color online) The Graphic Illustrates the Abstracted Network Topology and Shows an Example of the 95th Percentile 
Billing Scheme 
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To analyze quantitatively how to allocate bandwidth 
between edge regions and edge nodes for minimizing 
the 95th percentile bandwidth cost while ensuring QoS, 
we developed a mathematical programming model, as 
we describe in the appendix.

Challenges
Addressing the cost-effective traffic allocation problem 
and implementing a traffic allocation system pose sig
nificant challenges from both engineering and optimi
zation perspectives. In this section, we delineate the 
principal obstacles we encountered in these domains.

Engineering Challenges. Designing the overall frame
work of a traffic allocation system is a complex task 
that entails systems engineering involving diverse tech
nological areas and myriad factors. This begins with an 
exhaustive examination of the live video delivery pro
cess, from the source to the end users, and then modu
larizing this process into smaller, more manageable 
tasks. To ensure the successful implementation of these 
modules, we first defined the inputs and outputs of 
each module. We then collaborated closely with front
line engineers to confirm the availability of the neces
sary input data. Gradually, we designed and tested 
different modules, and iteratively refined them based 
on feedback from the engineers. To ensure a logically 
coherent system, it was essential to carefully consider 
the interactive effects among different modules and 
optimize their interactions in a systematic and holistic 
manner. This comprehensive approach enabled us to 
develop a streamlined and efficient system that meets 
our performance objectives.

To craft a sound traffic allocation plan that optimally 
reduces the total bandwidth cost while maintaining sat
isfactory QoS, an accurate forecast of future demand is 
critical. However, achieving this precision is challeng
ing due to the difficulty of predicting unexpected 
events. For instance, a sudden surge in access requests 
may be triggered by the emergence of breaking news.

Addressing real-time dynamic access requests while pro
viding satisfactory QoS necessitates a traffic allocation sys
tem capable of producing decisions within milliseconds. As 
such, high-speed algorithms and high-performance pro
gramming are imperative.

The network infrastructure also imposes additional 
restrictions on the traffic allocation strategies. As illus
trated in the subsection Hierarchical Infrastructure, we 
can only serve end users in an edge region with edge 
nodes that provide satisfactory QoS and are serviced by 
the same ISP. Further, there may be specific restrictions 
imposed on the usage of the network infrastructure due 
to management concerns. Therefore, a cost-effective 
traffic allocation system that is viable for real-world 
business implementation must respect all these addi
tional restrictions.

Optimization Challenges. Achieving optimal online 
traffic allocation strategies necessitates the discovery of 
effective offline solutions to the proposed mathematical 
programming model. However, the underlying model is 
analytically difficult due to the following two challenges.

First, the objective function of the model is particu
larly intricate. ISPs charge Huawei Cloud using the 
95th percentile billing scheme. As we mention above, 
this implies that only the 95th percentile of bandwidth 
utilization over a billing cycle is billed, which results in 
a nonconvex and nonsmooth cost function. Indeed, 
minimizing the 95th percentile billing cost has been 
proven to be NP-hard. Studies on optimizing the 95th 
percentile billing cost for live streaming business are 
lacking as we mention in the Saving the Bandwidth Cost 
section. Therefore, we needed to work from scratch to 
design algorithms that could adapt to such challenges.

Second, the mathematical model in practice is vast in 
scale. There are more than 4,800 edge regions and 2,800 
edge nodes with heterogeneous capacities and comput
ing abilities, resulting in millions of decision variables 
in the corresponding models. The scale of this model 
could require more than 300 GB of computer memory 
for storage. Therefore, we could not even load this 
model into a computer without a sufficient hardware 
configuration, let alone find an effective solution using 
off-the-shelf solvers. Hence, we needed to develop 
decomposition methods to efficiently solve the original 
problem. For example, we applied operator splitting 
algorithms to reduce the large original problem into 
several smaller and more manageable subproblems, 
iteratively solve them, and aggregate the results to find 
a good solution to the original problem.

Technical Solution
After realizing the significance of reducing the band
width cost and maintaining satisfactory QoS, as well 
as the inherent challenges, we started to develop a 
cost-effective and robust traffic allocation system 
called the GSCO in early 2020. In this section, we delve 
into the underlying logic of the GSCO system, discuss
ing the design and function of its constituent modules 
and the OR techniques employed in its creation.

Overview of the GSCO System
Figure 3 depicts the architecture of the GSCO system, 
which consists of five main modules classified into a 
planning pipeline and a scheduling pipeline. The plan
ning pipeline executes to produce the necessary input 
data, subsequently facilitating the operation of the 
scheduling pipeline.

In the planning pipeline, the Traffic Forecaster exten
sively exploits machine learning techniques to esti
mate future requests. In addition, the Network Planner 
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generates QoS-qualified and ISP-compliant connec
tions between edge regions and edge nodes.

Because the online traffic allocation strategies must 
be generated within milliseconds, we leverage schedul
ing theory and design a scheduling pipeline from 
coarse to fine to allocate access requests. First, the Off
line Solver (Monthly Level) creates monthly allocation 
strategies and appraises the bandwidth cost at the 
monthly level. At this phase, the static offline traffic 
allocation problem at a single time point is considered. 
Then, we implement the neighborhood search algo
rithm (NSA) by Mladenović and Hansen (1997) to tune 
results and obtain a higher multiplex rate, which mea
sures the utilization of the billed bandwidth of edge 
nodes, and better QoS without increasing the total 
bandwidth cost. Several scalable heuristic algorithms 
are embedded into the NSA. Second, the Offline Solver 
(Daily Level) produces daily allocation strategies and 
evaluates the bandwidth cost at the daily level. This 
module applies the NSA to adjust the input allocation 

strategies. Third, during the Online Solver phase, we uti
lize real-time optimization strategies to allocate network 
traffic. This allocation is based on previously calculated 
ratios derived from the traffic volumes assigned to feasi
ble connections between edge regions and edge nodes. 
In this module, cost predictions from the offline solvers 
are leveraged, complemented with dynamic mecha
nisms that are integrated to manage uncertainty and 
ensure optimal performance.

The above five core modules are interlinked and 
mutually reinforcing. The I/O flow of the GSCO system 
is summarized in Figure 4. The Traffic Forecaster takes 
historical data collected by the data management sys
tem, SLAs contracted with live platforms, channel levels 
predetermined by operations experts, and request fea
tures analyzed by data scientists as input, and generates 
the estimated requests, which serve as reference infor
mation for the other modules. The information on the 
network topology (including edge regions and edge 
nodes), and problem parameters (including bandwidth 

Figure 3. (Color online) The Flowchart Provides an Overview of the GSCO System for Efficient Bandwidth Allocation 
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capacities of edge nodes and bandwidth prices), com
prise a part of the input to Modules 2–5. In addition, the 
Network Planner incorporates SLAs to create feasible net
work connections between edge regions and edge nodes 
that meet tiered QoS requirements. Moreover, these con
nections comply with ISP-compliant regulations. The 
three traffic allocation solvers, namely Modules 3–5, uti
lize the generated feasible links as one of their input 
parameters. This ensures that traffic allocation strategies 
are formulated exclusively based on these links. Then, 
the Offline Solver (Monthly Level) outputs monthly alloca
tion strategies and the corresponding monthly band
width cost based on monthly data from estimated 
requests. Similarly, the Offline Solver (Daily Level) outputs 
daily allocation strategies and the corresponding daily 
bandwidth cost based on daily data from updated fore
casts and monthly allocation strategies. The Online Solver 
utilizes the results derived from the two offline solvers 
to handle online requests in real time. Specifically, the 
monthly level results are employed when processing 
access requests on the first day of a month, whereas the 
daily level results are leveraged for all other days. The 
previous allocation strategies created by these two off
line solvers are leveraged by the Offline Solver (Daily 
Level) based on the same principle.

GSCO System Modules
The five modules we show in Figure 3 are the principal 
components of the GSCO system. We describe the tech
nical details and OR methods adopted in each of them 
in this section.

Module 1: Traffic Forecaster. The forecaster system, 
which is used to predict traffic distribution between 
edge regions and edge nodes, primarily relies on state- 
of-the-art machine learning methods, including BHT- 
ARIMA (Shi et al. 2020). This method is based on multi
way delay-embedding transform tensorization (Yokota 
et al. 2018) and uses low-rank Tucker decomposition 
to implement tensor ARIMA (Box and Jenkins 1968). 
Throughout the implementation process, we gained 
several valuable insights.

Foremost, there is uncertain volatility caused by vari
ous factors. A salient example is the sudden surge in 
access requests triggered by breaking news. Addition
ally, there exists manual management of traffic allocation 
for tackling unexpected malfunctions. The information 
regarding such manual interventions is not communi
cated to the forecasting module, thereby reducing the 
prediction accuracy. Finally, the collection of adequate 
historical data to train our machine learning methods 

Figure 4. (Color online) The Graphic Illustrates the I/O Flow of the GSCO System 
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presents a significant challenge, particularly because pri
vacy considerations limit access to detailed client infor
mation. These challenges constitute serious impediments 
that may negatively impact prediction accuracy.

Although our initial focus was on refining the pre
diction accuracy of the Traffic Forecaster to better align 
predicted and actual demand, the aforementioned fac
tors necessitated a shift in our approach. We came to 
appreciate the inherent difficulties in achieving perfect 
demand alignment using prediction models alone. 
With this realization, we pivoted toward developing a 
system capable of adjusting to and accommodating 
changes in demand, even in the face of suboptimal pre
dictions. Consequently, we designed the GSCO system 
with this adaptability feature. It utilizes the most recent 
data available in offline solvers to update traffic alloca
tion strategies, dynamically responding to demand 
changes in real-time operations through the Online 
Solver. This agile handling of demand uncertainties 
and the ability to adapt to real-time changes under
score a significant advantage of the GSCO system in 
optimizing traffic allocation strategies. By acknowledg
ing the limitations of prediction models and pivoting 
toward adaptive strategies, we created a system that is 
robust and well-equipped to meet the demands of 
modern network infrastructures.

Module 2: Network Planner. The primary task of the 
Network Planner is to identify feasible network connec
tions between edge regions and edge nodes that comply 
with ISP-compliant regulations and meet the QoS 
requirements as stipulated in SLAs. First, the Network 
Planner is vigilant to maintain ISP compliance, restricting 
inter-ISP connections. For instance, it would not sanction 
the establishment of a connection between edge regions 
“CMCC-Shenzhen” and “CUCC-Guangzhou” due to 
mismatching ISPs. Second, the Network Planner assesses 
each possible link between an edge region and an edge 
node to verify that it can fulfill the pertinent SLAs. Refer
ring back to the example in Figure 1, should a link 
between the edge region “CMCC-Shenzhen” and the 
edge node “CMCC-Guangzhou” meet the QoS require
ments for the Tier 1 channel group, this connection 
would be considered a viable option for accommodating 
corresponding access requests. Conversely, a link that 
fails to meet these requirements, such as the connection 
between “CMCC-Shenzhen” and “CMCC-Beijing,” 
would be deemed infeasible for traffic allocation. The 
measure of various metrics, including stall frequency 
and end-to-end latency, are implemented in this module 
to continuously monitor the QoS.

Determining ISP-compliant connections is relatively 
straightforward. Initially, we perform a comprehen
sive matching process and only need to make minor 
adjustments when the information pertaining to the 
edge regions and edge nodes is updated. However, 

maintaining QoS-compliant connections is a more 
dynamic process. To this end, the Network Planner 
automatically reassesses the feasibility of network con
nections every two minutes based on current QoS 
metrics. This ensures that the SLAs of our clients are 
stringently upheld.

Module 3: Offline Solver (Monthly Level). The monthly 
level offline solver is run at the end of the current 
month to devise an initial allocation strategy and pro
vide an estimate of the total cost for the following 
month. In this module, a static offline traffic allocation 
problem based on our clients’ expected demand for 
the next month at a time point is considered. It is for
mulated as a minimum-cost network flow problem 
(MCNFP) by leveraging a linear approximation of the 
total cost (see the appendix for further details). The 
MCNFP can be efficiently solved by the combination of 
several algorithms, such as the generalized primal-dual 
algorithm (He et al. 2022), the balanced augmented 
Lagrangian method (He and Yuan 2021), the extended 
alternating direction method of multipliers (He and 
Yuan 2018), and the network simplex method (Cun
ningham 1976). We implemented these advanced opti
mization algorithms in Python on a PC with an IntelVR 

CoreTM i7-8700 CPU and 32GB RAM; the MCNFP can 
be solved within 10 seconds for real datasets.

Subsequently, the NSA is deployed to refine the initial 
allocation strategies. The aim is to increase the multiplex 
rate, bolster robustness, and enhance QoS without in
creasing the total bandwidth cost. The NSA integrates 
some removal and repair heuristics to improve the cur
rent solution. The concept is to destroy a part of the solu
tion (i.e., remove it from the current solution) and repair 
it afterward. The objective of the removal heuristics is to 
create opportunities for the repair heuristics to optimize 
the solution. In practice, we apply two pairs of removal 
and repair heuristics. The first one is to improve the mul
tiplex rate. This heuristic tunes the allocation strategy by 
capitalizing on excess capacity at edge nodes serving 
channel groups with higher popularity to provide ser
vices for those with lower popularity. As we note above, 
each edge node has 5% free time slots during a billing 
cycle. If these capacities are only partially utilized or 
remain entirely unused during these slots, it would rep
resent a marked inefficiency in bandwidth resource utili
zation. Thus, it is advantageous for us to consolidate 
access requests onto edge nodes possessing redundant 
capacities during such slots. This strategy takes ad
vantage of the fact that these edge nodes are not fully 
utilized by the access requests complying with their 
respective SLAs. Essentially, this redistribution does not 
violate our QoS commitments; rather, it ensures they are 
upheld more diligently. We only allocate this excess 
capacity to requests that have less rigorous QoS require
ments, ensuring they are adequately served by nodes 
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capable of meeting even higher QoS standards. This 
approach, therefore, maintains and even enhances our 
overall compliance with QoS requirements. The second 
one is designed to improve system robustness. This heu
ristic refines the allocation strategy with the intention of 
increasing the number of edge nodes allocated to a sin
gle edge region, thereby considerably enhancing the 
resilience of the system. Consequently, if an unexpected 
event occurs, such as an edge node failure, the impact 
will be minimal. In addition, we can promptly redirect 
access requests, initially linked to the affected node, to 
other functioning edge nodes. Such a configuration 
allows for a swift recovery and ensures uninterrupted 
service, thus preserving the robustness and reliability of 
the system.

Module 4: Offline Solver (Daily Level). The Offline 
Solver (Daily Level) operates daily, with the exception of 
the last day of the month when the Offline Solver 
(Monthly Level) takes precedence, as we mention above, 
to refresh allocation strategies and update the esti
mated total bandwidth cost. During the operation, it 
employs the NSA, utilizing the same heuristic algo
rithms as detailed in Module 3: Offline Solver (Monthly 
Level). The focus of this application is to refine the allo
cation strategies, which have been formulated either on 
a preceding day or by the Offline Solver (Monthly Level) 
on the initial day of a month. This refinement process 
takes into consideration the most recent predicted de
mand and the current network topology. In this way, 
the allocation strategies are constantly updated and 
optimized, reflecting the dynamic nature of the de
mand and the network conditions. The output of this 

module is an optimized set of allocation strategies 
and the estimated total bandwidth cost. These data are 
subsequently leveraged extensively within the Online 
Solver for real-time operations.

Module 5: Online Solver. The Online Solver is tasked 
with generating real-time allocation strategies while 
adhering to strict time constraints. It creates an alloca
tion table that embodies these strategies in the form of 
probabilities, which represent the likelihood that access 
requests from each edge region will be routed to each 
respective edge node by the traffic allocation actuator. 
Figure 5 describes the relationship among the GSCO 
system, the allocation table, and the traffic allocation 
actuator. The GSCO system is analogous to that of a 
brain, generating traffic allocation strategies for the actu
ator to execute the traffic allocation process. The alloca
tion table, meanwhile, provides the tangible output of 
these strategies. Table 1 shows an example of the alloca
tion table. In this instance, the access requests from the 
edge region “CMCC-Shenzhen” will be assigned to the 
edge node “CMCC-Shenzhen” with a probability of 0.8 
and to the edge node “CMCC-Guangzhou” with a prob
ability of 0.2. In practice, we uniformly draw a random 
number from the interval [0, 1] when an access request 
arrives. If it is less than 0.8, this access request will be 
assigned to “CMCC-Shenzhen.” Otherwise, it will be 
assigned to “CMCC-Guangzhou.” It should be noted 
that the given example is a simplified representation 
for illustrative purposes. In a real-world scenario, we 
employ the multinomial distribution to determine the 
assignment of an edge node to an edge region. This par
ticular probability distribution proves useful when there 
are more than two potential edge nodes to be assigned 
to an edge region. Each node is assigned a probability, 
as defined in the allocation table, the summation of 
which equals 1.0. Upon the arrival of an access request, 
a random variable adhering to the defined multinomial 
distribution is generated and the outcome corresponds 
to a specific edge node, which is then assigned the 
incoming access request.

The allocation table expedites the traffic allocation 
process, enabling it to be completed in milliseconds. 
This efficiency is because the GSCO system only needs 
to execute a search algorithm to obtain the correspond
ing probabilities from the allocation table, and then a 
random number generation method to finalize the allo
cation decision. This allocation table is generated based 

Figure 5. (Color online) The Graphic Illustrates the Relation
ship Among the GSCO System, the Allocation Table, and the 
Traffic Allocation Actuator 
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Note. The actuator executes the traffic allocation strategies generated 
by the GSCO system, as represented by assignment probabilities in 
the allocation table.

Table 1. The Table Provides an Example of the Allocation Table that Contains the 
Probabilities of Assigning Traffic from Each Edge Region to Each Edge Node

CMCC-Shenzhen CMCC-Guangzhou CMCC-Beijing

CMCC-Shenzhen 0.8 0.2 0.0
⋯ ⋯ ⋯ ⋯
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on the outputs of the Offline Solver (Monthly level) and 
the Offline Solver (Daily level). The probabilities used in 
the allocation table are derived by calculating the 
ratios of the traffic volume assigned to each edge node 
based on the offline allocation strategies, and further 
adjusted to accommodate dynamic conditions. This 
process ensures that the online strategy is responsive 
to real-time changes in the network environment, 
thereby maintaining our commitment to QoS.

Comparison of the Scheduling Modules
Three scheduling modules in the GSCO system (i.e., 
Modules 3–5) produce allocation strategies in different 
time horizons. Collectively, these three modules consist 
of a comprehensive workflow for allocating bandwidth 
as delineated in the preceding sections of this paper, 
and their relevance varies across distinct scenarios.

In scenarios where there are no extraordinary events, 
Modules 3 and 5 are the dominant modules because of 
the roughly similar trends of traffic requests in the 
short term. However, in the case of a super event, Mod
ules 4 and 5 are the dominant modules because alloca
tion strategies are expected to be adjusted daily, and 
we need to handle a sudden surge of access requests. 
In emergency situations, Module 5 becomes the princi
pal module. In these instances, allocation strategies 
necessitate immediate and timely adjustments to man
age the abrupt and unpredictable changes in network 
traffic.

Managerial Challenges
We encountered two major managerial challenges 
throughout the development of the GSCO system.

First, advocating the value of OR to senior managers 
lacking a deep understanding of OR was challenging. 
This difficulty slowed the initial development phase of 
the GSCO system. To address this, we initiated a series 
of informative lectures, showcasing successful exam
ples of how OR can effectively reduce bandwidth costs 
while maintaining high QoS. These educational presen
tations captivated the interest of senior managers and 
frontline engineers, leading to a broader understanding 
and eventual acceptance of our proposed system.

Second, we faced the challenge of persuading the 
operations and maintenance teams of live streaming 
services to adopt the GSCO system. Their primary con
cern was the stability of the system. To alleviate these 
concerns, we initially deployed the system to a small 
selection of edge nodes, thereby demonstrating its 
robustness and stability over several months. Then, we 
showed the superior performance of the system in 
terms of bandwidth cost efficiency and QoS to convince 
the operational staff of its benefits. As a result, the 
GSCO system gradually gained acceptance and is now 
utilized for live streaming services in Huawei Cloud.

Milestones
Figure 6 shows the timeline of the development of the 
GSCO system. We highlight the following milestones. 

Figure 6. (Color online) The Development of the GSCO System Spans More Than Two Years 
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• Before Q1 2020: Amidst increasing business ex
pansion and network complexity, Huawei Cloud rec
ognized the inefficiency of manual traffic allocation. 
This led to the decision to develop an automated sys
tem based on systems engineering and OR principles.
• Q1 2020: With a comprehensive cost analysis and 

demonstration of our initial GSCO system roadmap, 
we illustrated the superiority of an OR-based approach 
over the previous manual system. This was crucial in 
obtaining senior management approval, leading to the 
official commencement of the GSCO system project.
• Q2 2020: We established two integral components 

of the GSCO system: a traffic forecaster utilizing vari
ous machine learning techniques, and a network topo
logical planner, ensuring QoS through the creation of 
viable connections between edge regions and nodes.
• Q1 2021: We implemented Module 3 of the GSCO 

system, an offline solver capable of generating monthly 
traffic allocation via a two-phase strategy, heavily 
leveraging advanced optimization algorithms and the 
NSA.
• Q3 2021: We enhanced the interaction between 

deployed modules by fixing several engineering vul
nerabilities and updating the heuristic algorithms 
within the NSA. Additionally, we completed the devel
opment of the second offline solver, Module 4 of the 
GSCO system, which was designed to generate daily 
traffic allocation.
• Q1 2022: We launched Module 5 of the GSCO sys

tem, an online solver designed for real-time traffic allo
cation, utilizing various fast-execution strategies.
• After Q1 2022: The GSCO system was essentially 

complete. Our focus shifted primarily to repairing vul
nerabilities and rolling out general updates. The system, 
according to recent statistics, continues to efficiently gen
erate traffic allocation strategies, accommodating up to 
eight million access requests per minute as of Q4 2022.

In essence, the deployment of the GSCO system was 
an iterative process, manifested not only in the step-by- 
step implementation of core algorithms and modules but 
also in the gradual broadening of its operational sphere 
within the network. To clarify, we initially applied the 
developed algorithms within a restricted set of edge 
nodes and edge regions. Subsequently, we consistently 
rectified vulnerabilities, refined algorithms, and widened 
the operational range, until we successfully integrated a 
module into the entire live streaming service. This phased 
development strategy enabled us to address problems 
promptly and to ensure the production of high-quality 
software.

Financial Benefits
With various built-in OR techniques, the GSCO system 
has been implemented to solve the traffic allocation pro
blems of Huawei Cloud in regard to its live streaming 

services. To quantify GSCO’s financial benefits, we 
define the unit cost for a given quarter to be the quotient 
of the total fee we pay to ISPs to purchase bandwidth 
resources and the total amount (in bandwidth) of live 
streaming service provided:

the unit cost

�
the total fee paid to ISPs

the total amount of live streaming service provided :

Note that the unit cost is not the procurement price 
from the ISPs for bandwidth resources. Instead, this 
equation measures the cost of providing one unit of 
live streaming service in bandwidth (e.g., 1 Gigabit per 
second) for our clients in each quarter. Therefore, if 
the price of network bandwidth charged by the ISPs 
remains unchanged, a decrease in this unit cost indi
cates that the GSCO system enables us to provide the 
same amount of service but with a lower bandwidth 
cost. It is worth mentioning that such assumptions on 
the static unit price of bandwidth resources are reason
able. The network bandwidth industry differs from the 
traditional retailing business, where the scale effect on 
the unit price is prominent. Network bandwidth is 
indeed a kind of scarce resource because currently, the 
construction of network infrastructure is usually slower 
than the increasing demand. In the network bandwidth 
market, many expanding cloud providers compete for 
limited bandwidth resources. Hence, even though our 
market share has increased with a smoother demand 
and larger traffic bandwidth, the unit bandwidth price 
charged by the ISPs usually does not decrease. In addi
tion, in some cases, such as a super event, the unit 
bandwidth price even increases due to fierce competi
tion. However, it is exactly the GSCO’s ability to reduce 
the bandwidth cost that motivates Huawei Cloud’s cli
ents to increase the scale of their business, thereby pro
portionally enhancing Huawei Cloud’s market share.

We then set the unit cost as of Q1 2020 as the bench
mark, prior to the implementation of the GSCO sys
tem. Specifically, we compute and normalize the unit 
cost of each quarter such that the unit cost in Q1 2020 
is 1.0. Then, we can obtain the bandwidth cost-saving 
percentage. For example, the normalized unit cost is 
about 0.97 in Q2 2020, and the bandwidth cost-saving 
percentage is 3% (1:0� 0:97 � 3%). By the unit cost cal
culation above, such a percentage indicates the pro
portion of bandwidth cost savings in supplying the 
same amount of services compared with Q1 2020. 
Therefore, we determined the estimated savings on 
bandwidth costs by multiplying the actual total cost 
paid to ISPs by the corresponding bandwidth cost- 
saving percentage. For example, the actual total cost 
we paid to ISPs in Q2 2020 was $6:96 million, the cor
responding bandwidth cost-saving percentage was 
3%, and thus the estimated savings on the bandwidth 
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cost in this quarter was about $0:21 million (6:96 ×
0:03 � 0:2088). That is, to maintain the same level of 
live streaming service, we would have needed to pay 
an additional $0:21 million to the ISPs if we had not 
implemented the GSCO system. Finally, we obtained 
the estimated accumulated bandwidth cost saving of 
$49:6 million by summing the bandwidth cost saving 
of each quarter from Q1 2020 to Q3 2022. In addition, 
we use the bandwidth cost-saving percentage of Q3 
2022 to represent the latest cost-saving ability of the 
GSCO system, which is 30%.

Figure 7 summarizes the aforementioned metrics 
and financial data. In this figure, each circular marker 
represents the normalized unit cost for each respec
tive quarter. The dotted bars represent quarterly 
actual total bandwidth costs paid by Huawei Cloud to 
ISPs. All numbers of the dotted bars are real costs pro
vided by Huawei Cloud’s finance department. The 
slashed bars represent quarterly estimated savings on 
bandwidth costs with the GSCO system. That is, the 
sum of a dotted bar and the corresponding slashed 
bar represents the estimated total bandwidth cost if 
we had not implemented the GSCO system during 
that quarter.

It is important to note that obtaining the baseline 
cost without the GSCO system through comprehen
sive A/B tests would have been a more appropriate 
approach. However, due to the nature of our cross- 
regional scheduling and the need to optimize for the 
overall system, it was difficult to set up two identical 
test environments. Even if we had managed to find 
two identical environments to conduct the experi
ment, using different scheduling algorithms would 
have resulted in different end-user experiences, which 
would not have met the client’s requirements for 
consistency in user experiences. Therefore, while we 
acknowledge the limitations of not having a proper 
A/B test, we have taken steps to minimize any poten
tial bias in our results.

Impact
Beyond the financial benefits discussed above, the 
GSCO system has also considerably extended Huawei 
Cloud’s market share within the live streaming sector, 
enhanced our employee experience, and established a 
precedent for successful utilization of OR methods in 
addressing issues prevalent in cloud computing. The 
ensuing discussion in this section will illustrate these 
additional benefits.

Expanding Market Share
With lower cost and better QoS (i.e., lower stall fre
quency and end-to-end latency), the GSCO system sig
nificantly increased Huawei Cloud’s live streaming 
market share from 1.5 Tbps to 16 Tbps measured by the 
peak bandwidth. Each of Huawei Cloud’s live stream
ing service clients chooses its cloud providers from 
many tenders, mainly by the providers’ QoS and quota
tion. Take one of our major clients as an example. To 
strictly evaluate the service of its cloud providers, the 
client has a scoring system, which consists of the price 
and marketing strategies (50%), quality of service (30%), 
and SLA (20%). The client then determines its business 
scale in accordance with the scores of all bidding cloud 
providers. The GSCO system has helped Huawei Cloud 
provide live streaming services to the client at a lower 
price and with a higher QoS. Thus, it has been increas
ing its business scale with Huawei Cloud from 2020 to 
2022. For example, Huawei Cloud’s market share of this 
client’s live streaming fluctuated between 2% and 4% in 
2020, during which the GSCO system project was in its 
infancy. In 2021, Modules 1–3 of the GSCO system were 
deployed, and we realized a 17% reduction in the unit 
cost, leading to a significant increase in Huawei Cloud’s 
market share of this client’s live streaming services from 
6% in Q1 2021 to 12% in Q4 2021. In 2022, we deployed 
the complete GSCO system, the unit cost decreased by 
an additional 15%, and Huawei Cloud’s market share 
climbed gradually from 18% to 20%.

Figure 7. (Color online) The Graph Illustrates Financial Benefits in Terms of Quarterly Bandwidth Cost Savings 
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Improving Employee Experience
The GSCO system has revolutionized Huawei Cloud’s 
traditional, experience-based model by automating the 
generation of traffic allocation results. This has mark
edly elevated operational efficiency and considerably 
lessened the need for labor. Before its implementation, 
we needed three experts to manually monitor and 
schedule traffic, each working eight hours a day. Now, 
we need only one expert working less than 20 minutes 
each day to update GSCO’s configurations. Therefore, 
the implementation of the GSCO system led to a de
crease of 98.6% in expert labor.

We designed an online graphical user interface (GUI) 
to visualize all the data throughout the operation of the 
GSCO system. This interface conveniently presents a 
variety of information in graph and chart formats, 
including traffic request distribution, current traffic 
allocation strategies, traffic allocation results, the billed 
bandwidth, and QoS metrics. This GUI equips engi
neers and decision makers with the tools needed to 
constantly monitor the system’s operational status and 
swiftly adjust allocation strategies during emergencies. 
For example, on the homepage of the GUI, the whole 
network topology of the live streaming services can be 
visualized, including the live video providers, edge 
nodes, data centers, and feasible communication links. 
On the page dedicated to displaying SLAs, managers 
have the flexibility to alter the classification standards 
of SLAs simply by adjusting the values of the relevant 
QoS metrics in their respective text boxes. Moreover, a 
dedicated page visualizes traffic request data, enabling 
managers to easily view or export historical request 
data within a specific time slot.

Prevailing OR Techniques
As we state above, the development of the GSCO system 
was enabled exclusively through the application of vari
ous OR techniques. This realization has been embraced 
across Huawei Cloud from C-level executives (i.e., senior 
management) to frontline engineers, affirming OR as a 
pivotal technology capable of enhancing cost efficiency 
and fostering productivity. The successful implementa
tion of OR techniques in our projects has encouraged 
more departments within Huawei Cloud to incorporate 
them into their research and development efforts. A tes
tament to this ripple effect is that another team within 
Huawei Cloud embarked on a project to tackle virtual 
machine scheduling issues using mixed-integer pro
gramming (MIP) models.

Portability
Currently, the GSCO system has primarily been de
ployed for traffic allocation in Huawei Cloud’s live 
streaming services. It has also been successfully adopted 
by other companies as a solution for their live streaming 

business. We have also begun applying the GSCO sys
tem to other cloud media services, particularly the con
tent delivery network (CDN) service and real-time 
communication network (RTC) service. This extension is 
driven by the fact that these services have major opera
tional expenses tied to the bandwidth cost and the traffic 
allocation problems they face can be addressed using 
similar mathematical models. For instance, under the 
common 95th percentile billing scheme, minimizing 
bandwidth costs in these services can be expressed as 
distinct MIP models, but the objective functions bear a 
significant resemblance to each other. The QoS con
straints may vary, but these variations are often slight 
and related to specific parameters. Therefore, we can 
apply the same methodologies and philosophies that 
informed the design of the GSCO system to CDN and 
RTC services, also enabling significant bandwidth cost 
savings for these services.

Summary
This paper discusses the development and implemen
tation of the GSCO system, an innovative solution 
designed to optimally reduce the network bandwidth 
cost while maintaining the QoS level in Huawei 
Cloud’s live streaming business. By incorporating var
ious OR methodologies and machine learning meth
ods, the GSCO system dynamically allocates network 
traffic, resulting in a significant decrease in operational 
expenses. In the face of multiple technical and practical 
hurdles, the system has been exceptionally successful, 
reducing the network bandwidth cost by 30% and sav
ing more than $49.6 million from Q1 2020 to Q3 2022. 
In addition, it has notably expanded Huawei Cloud’s 
market share, with its peak bandwidth growing from 
an initial 1.5 Tbps to a considerable 16 Tbps. Huawei 
Cloud has begun to extend the GSCO system to other 
cloud media services, such as CDN and RTC services, 
which not only underscores the portability of the 
GSCO system but also promises additional cost reduc
tions and improvements in efficiency.
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Appendix. Model Formulation and Details of 
Optimization Methods

Model Parameters
• Let I � {1, 2, : : : , m} be the index set of all nodes 

abstracted from edge regions, and | I | �m, where | · | denotes 
the cardinality of a set. We use the letter i to indicate the index 
of the edge regions.
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• Let J � {m+ 1, m+ 2, : : : , m+ n} be the index set of all 
nodes abstracted from edge nodes, and |J | � n. We use the 
letter j to indicate the index of the edge nodes.
• Let V � I ∪ J be the index set of all nodes in the overlay 

network of the cloud edge, and |V | �m+ n.
• Let E � {(i, j) | i ∈ I, j ∈ J} be the set of edges abstracted 

from feasible network connections that satisfy QoS and ISP 
requirements, and |E | ≤mn.
• Let T � {1, 2, : : :p} be a series of time points during a bill

ing cycle, and |T | � p. We use the letter t to indicate the index 
of the time points.
• Let [t, t+ 1], t ∈ T be a five-minute time slot in the billing 

cycle T.
• Let G � (V, E, T) be the topology of the overlay network 

of the cloud edge.
• Let cj > 0 be the bandwidth capacity of the edge node 

j ∈ J.
• Let d(t)i ≥ 0 be the traffic demand of the edge region i ∈ I 

in the time slot [t, t+ 1], t ∈ T.
• Let uj > 0 be the unit price of the bandwidth at the edge 

node j ∈ J.

Decision Variables
To find the most cost-effective traffic allocation through QoS- 
satisfied connections between edge regions and edge nodes 
in our problem, we introduce decision variables for the traffic 
across each feasible connection throughout the billing cycle. 
The definition is as follows: 
• Let x(t)ij ≥ 0 be the traffic assigned to the feasible connec

tion (i, j) ∈ E in [t, t+ 1], t ∈ T.
The total number of variables equals |E | × |T | .

Objective Function
We aim to minimize the total bandwidth cost accrued at the 
cloud edge with the 95th percentile billing scheme while ful
filling the QoS requirements. Considering that the QoS 
requirements are implicitly considered, with traffic demands 
always catered to via QoS-compliant connections, our focus 
in the objective function is exclusively on minimizing the total 
bandwidth cost. Then, we have:

min
X

j∈J
uj ·Q95

X

(i, j)∈E
x(t)ij

8
<

:

9
=

;

p

t�1

0

@

1

A

0

@

1

A, (A.1) 

where Q95(·) is the operation to determine the 95th percentile 
of a set of numbers.

Constraints
Our traffic allocation system has the following constraints:

X

(i, j)∈E
x(t)ij � d(t)i , ∀i ∈ I, t ∈ T; (A.2a) 

X

(i, j)∈E
x(t)ij ≤ cj, ∀j ∈ J, t ∈ T; (A.2b) 

x(t)ij ≥ 0, ∀(i, j) ∈ E, t ∈ T: (A.2c) 

We interpret these constraints as follows: 
• Constraint (A.2a) mandates that every access request 

must be acknowledged and served.

• Constraint (A.2b) states that the bandwidth capacity of 
each edge node should not be exceeded.
• Constraint (A.2c) specifies the domain of decision variables.
Additionally, both Constraints (A.2a) and (A.2b) stipulate 

that all demands must be met through viable network con
nections E.

The deterministic model we present offers a vital frame
work for confronting the dynamic traffic allocation problem. 
Although it simplifies the dynamic intricacies inherent to net
work systems, it is essential in investigating the characteris
tics of the problem and designing effective offline algorithms. 
Although this model forms the core of our problem-solving 
approach, it does not operate in isolation. Instead, it is supple
mented by auxiliary mechanisms meticulously designed to 
manage the problem’s dynamic nature, details of which are 
further expounded in the body of the paper.

Optimization Methods
We present the application of the generalized primal-dual 
algorithm (He et al. 2022) and the balanced augmented 
Lagrangian method (He and Yuan 2021) for solving the 
MCNFP, which is a critical step in the proposed offline solver 
modules.

MCNFP
To solve the offline cost-effective traffic allocation problem 
with the 95th percentile billing scheme, which we demon
strate in Equations (A.1) and (A.2a)–(A.2c), we adopt a linear 
relaxation of the complex objective function. Specifically, we 
select a representative time point t∗ ∈ T and conduct the traffic 
allocation, which we formulate as the MCNFP:

min
X

j∈J
uj ·

X

(i, j)∈E
x(t
∗)

ij

0

@

1

A (A.3) 

subject to
X

(i, j)∈E
x(t
∗)

ij � d(t
∗)

i , ∀i ∈ I; (A.4) 

X

(i, j)∈E
x(t
∗)

ij ≤ cj, ∀j ∈ J; (A.5) 

x(t
∗)

ij ≥ 0, ∀(i, j) ∈ E: (A.6) 

Define the vector u:

u � [u1, u2, : : : , un|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n

, u1, u2, : : : , un|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n

, : : : , u1, u2, : : : , un|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m

]
⊤
mn×1

(A.7) 

the vector x:

x �
h
x(t
∗)

11 , x(t
∗)

12 , : : : , x(t
∗)

1n , x(t
∗)

21 , x(t
∗)

22 , : : : , x(t
∗)

2n , : : : , x(t
∗)

m1 ,

x(t
∗)

m2 , : : : , x(t∗)mn

i⊤

mn×1
, (A.8) 

the vector d:

d � [d1, d2, : : : , dm]
⊤
m×1, (A.9) 

and the vector c:

c � [c1, c2, : : : , cn]
⊤
n×1: (A.10) 

Yuan et al.: Huawei Cloud’s GSCO System 
INFORMS Journal on Applied Analytics, 2024, vol. 54, no. 1, pp. 37–53, © 2024 INFORMS 51 



The objective function (A.3) is equivalent to u⊤x. In addition, 
define an indicator function σ(·) as follows:

σ(i, j) �
�1, if (i, j) ∈ E;

0, otherwise:
(A.11) 

Then, define a m ×mn matrix C as

C �

σ(1, 1) σ(1, 2) ⋯ σ(1, n) 0 ⋯ 0 ⋯ 0

0 0 ⋯ 0 σ(2, 1) ⋯ 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ 0 ⋯ 0 ⋯ 0

0 0 ⋯ 0 0 ⋯ σ(m, 1) ⋯ σ(m, n)

2

6
6
6
6
6
4

3

7
7
7
7
7
5

m×mn

,

(A.12) 

and an n ×mn matrix F as

F �

σ(1, 1) 0 ⋯ 0 ⋯ σ(m, 1) 0 ⋯ 0

0 σ(1, 2) ⋯ 0 ⋯ 0 σ(m, 2) ⋯ 0

⋮ ⋮ ⋱ 0 ⋯ ⋮ ⋮ ⋱ 0

0 0 ⋯ σ(1, n) ⋯ 0 0 ⋯ σ(m, n)

2

6
6
6
6
6
4

3

7
7
7
7
7
5

n×mn

:

(A.13) 
Then, the compact formulation of the MCNFP is written as

min u⊤ x (A.14) 

subject to
C

�F

� �

x ≽
d
�c

� �

, (A.15) 

x ≽ 0, (A.16) 

where 0 is a mn × 1 all-zeros vector, and ≽ denotes element- 

wise inequalities. For simplicity and clarity, we denote C
�F

� �

by A and d
�c

� �

by b in the following.

The Generalized Primal-Dual Algorithm for the MCNFP
Following He et al. (2022), we first write down the Lagrangian 
function of the MCNFP (A.14)–(A.16):

L(x, l) � u⊤x� l⊤(Ax� b), (A.17) 

where l ∈ Rm+n
+ is the Lagrangian multiplier. Then, the itera

tive scheme of the generalized primal-dual algorithm reads as

xk+1 � arg min L(x, lk) +
r
2 ‖x� xk‖2|x ∈ Rmn

+

n o
, (A:18)

xk+1 � 2xk+1 � xk, (A:19)

lk+1 � arg max L(xk+1, l)�
s
2 ‖l�lk‖2 |l ∈ Rm+n

+

n o
, (A:20)

8
>>>>><

>>>>>:

where r > 0 and s > 0 are parameters, and we can determine 
the less restrictive condition of r · s by exploring the structure 
of A to improve the efficiency of the algorithm. For example, 
He et al. (2022) leverage a heuristic to set r · s as the average of 
the trace (instead of the trace itself) of the matrix A⊤A for 
solving the classic assignment problem. In the context of live 
streaming, the structure of A is related to the feasible connec
tions between edge regions and edge nodes. In addition, both 
subproblems (A.18) and (A.20) have closed-form analytical 
solutions and thus are easy to solve.

The Balanced Augmented Lagrangian Method for 
the MCNFP
Following He and Yuan (2021), the iterative scheme of the 
balanced augmented Lagrangian method reads as

xk+1 � arg min u⊤x +
r
2 ‖x� qk

0‖
2
|x ∈ Rmn

+

n o
, (A:21)

lk+1 � arg min
n 1

2 (l� lk)⊤H0(l� lk)

+ (sk
0)
⊤l |l ∈ Rm+n

+

o
, (A:22)

8
>>>><

>>>>:

where qk
0 � xk + (1=r)A⊤lk, sk

0 �A(2xk+1 � xk)�b, H0 � (1=r)
AA⊤ + δI, and r > 0 and δ > 0 are parameters. Note that both 
subproblems (A.21) and (A.22) have analytical solutions and 
thus are easy to solve.

References
Box GE, Jenkins GM (1968) Some recent advances in forecasting and 

control. J. R. Statist. Soc. Ser. C. Appl. Statist. 17(2):91–109.
Cunningham WH (1976) A network simplex method. Math. Program

ming 11(1):105–116.
Grand View Research (2022) Video streaming market worth $330.51 

billion by 2030. Accessed August 30, 2022, https://www.grand 
viewresearch.com/press-release/global-video-streaming-market.

Harrison A, Skipworth H, van Hoek RI, Aitken J (2019) Logistics Man
agement and Strategy: Competing Through the Supply Chain (Pearson, 
London).

He B, Yuan X (2018) A class of ADMM-based algorithms for three- 
block separable convex programming. Comput. Optim. Appl. 70(3): 
791–826.

He B, Yuan X (2021) Balanced augmented Lagrangian method for 
convex programming. Preprint, submitted August 19, https:// 
arxiv.org/abs/2108.08554.

He B, Ma F, Xu S, Yuan X (2022) A generalized primal-dual algorithm 
with improved convergence condition for saddle point problems. 
SIAM J. Imaging Sci. 15(3):1157–1183.

iiMedia Research (2022) iiMedia Report—Development Status and 
Market Research Analysis Report of China’s Live Streaming 
Industry in 2022. Accessed August 30, 2022, https://www.iimedia. 
cn/c400/84858.html.

Jalaparti V, Bliznets I, Kandula S, Lucier B, Menache I (2016) Dynamic 
pricing and traffic engineering for timely inter-datacenter trans
fers. Proc. 2016 ACM SIGCOMM Conf. (ACM, New York), 73–86.

Kleinerman K (2022) Cloud computing in the media and entertainment 
industry. Accessed December 13, 2022, https://www.ridge.co/ 
blog/cloud-computing-in-the-media-and-entertainment-industry/ 
#cloud-media-processing.

Lambert D, Stock JR, Ellram LM (1998) Fundamentals of Logistics 
Management (McGraw-Hill/Irwin, New York).

Liu R (2022) China’s overall cloud computing market forecast, 
2021–2025. Accessed December 13, 2022, https://www.idc.com/ 
getdoc.jsp?containerId=CHE47428121.

Magnanti TL, Wong RT (1984) Network design and transportation 
planning: Models and algorithms. Transportation Sci. 18(1):1–55.

Marinescu DC (2022) Cloud Computing: Theory and Practice (Morgan 
Kaufmann, Cambridge, MA).
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