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Abstract. This article describes the development of a decision support tool for a Rich 
Vehicle Routing Problem (R-VRP) of a major do-it-yourself (DIY) retailer supplying its 
stores across Europe from multiple depots. The retailer uses external logistic service pro
viders (LSPs) for the delivery to its stores and has two modes to choose from. In the first 
mode, the retailer proposes delivery tours to LSPs for execution. These tours are billed 
according to a nonlinear tariff with volume discounts depending on the delivery zones 
visited and the load carried. The LSPs accept the retailer’s tour proposal only if tour 
duration and distance restrictions are kept. The latter is ensured by a relative detour 
limit. In the second mode, the retailer assigns single shipments to common carriers that 
consolidate them with shipments from other customers and bill this based on load and 
destination. The resulting problem represents an open VRP with two delivery modes, 
carrier selection and a heterogeneous fleet. Multiple delivery modes are standard in DIY 
retailing and constitute a general industry problem. The literature on VRPs and current 
software applications in the industry predominantly considers modeling and solution 
approaches that rely on linear distance costs, neglecting that nonlinear zone-based tariffs 
with volume discounts are standard in the freight forwarding business. Our work 
addresses this issue by developing a decision support tool for the retailer based on an 
exact algorithm for solving R-VRPs with a nonlinear zone-based tariff scheme and a rel
ative detour limit. The tool is based on an innovative three-component set partitioning 
algorithm working on a complete set of feasible tours to solve the problem. We show 
that our approach optimally solves the daily distribution problem of the industry part
ner with up to 150 stores. Furthermore, implementing the tool enables more comprehen
sive and structured planning for the retailer and an average of 8% transportation cost 
savings, translating to total savings of more than e1 million per year for this specific 
retailer compared with the status quo.
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Introduction
Do-it-yourself (DIY) retailing accounts for almost $1 tril
lion in sales globally and continues to grow by 4% annu
ally (Statista 2021). The transportation of goods to the 
stores is a decisive cost factor and accounts for up to 58% 
of total distribution costs (Rodrigue 2020). We have 
developed a tool to address the operational transporta
tion problem at an international DIY retailer (denoted 
DIY-R). DIY-R is a major European retailer with over 650 
retail stores across Europe with approximately 48,000 
employees. DIY-R offers a broad product assortment, 
from gardening supplies to living solutions to technical 
equipment. The retailer operates various store types, 
with different sizes and demands, that are supplied 

from three depots, weekly to triweekly. Up to 150 stores 
are supplied per day. Like most European DIY compa
nies, DIY-R uses external logistics service providers 
(LSPs) to supply its stores from central warehouses. The 
industry standard is the use of multiple delivery modes 
for the operational problem (Keskin et al. 2014, Dang 
et al. 2021, Khodabandeh et al. 2021). In the case of DIY- 
R, these modes are 
• Subcontracted Delivery Tours with LSPs (SDT) and
• Subcontracted Single Shipments with common carriers 

(SSS).
With regard to SDT, DIY-R proposes delivery tours of 

one or multiple store orders that an LSP executes. These 
tours are then exclusively carried out for DIY-R and 
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must adhere to maximum tour duration and distance 
constraints. The LSPs bill DIY-R according to their non
linear zone-based tariff. Within this tariff, each store is 
allocated to a specific delivery zone. The total costs of a 
tour depend on the furthest zone visited and the total 
load carried. In addition, the tariff includes an all-unit 
volume discount, meaning a higher total load leads to 
lower costs per load unit. Zone-based tariffs are com
monly used in the freight transport sector as they sub
stantially simplify the cost calculation of delivery tours. 
Proposing tours to the LSPs without explicit routing is 
possible using the tariff. In this case, however, it cannot 
be guaranteed that the LSPs will accept the tours, owing 
to potential tour duration and distance violations.

The second mode, SSS, at DIY-R involves shipping 
a single-store order using common carriers. No deliv
ery tour proposal is required in this case; the common 
carriers are responsible for the whole delivery process 
and may deliver the orders of DIY-R together with 
orders from other customers. The retailer pays a fixed 
fee that depends on the origin, destination, and load 
units. The second mode is generally more expensive 
per load unit than a high-volume delivery tour. It 
may still be attractive for store orders that cannot be 
efficiently combined with other orders on delivery 
tours. Cost-optimal distribution therefore uses a mix 
of both options.

The current practice at DIY-R is based on a manual, 
legacy planning process that has evolved over time and 
mainly relies on spreadsheet calculations. Each store has 
predetermined delivery days (e.g., every second Mon
day), and the stores order three days in advance. When 
all orders of a delivery day are available, the logistics 
planners allocate the orders either to tours (SDT) or com
mon carriers (SSS). A single store may be served by a 
combination of SDTs and SSSs, as each store potentially 
submits multiple orders for different goods. The plan
ners aim to maximize the number of store orders allo
cated to SDT and predominantly build tours with full 
truckloads because of the volume discounts granted by 
LSPs. After the orders are allocated, the planners check 
the tour feasibility concerning distance and tour duration 
using a standard map provider. If a tour is nonfeasible, 
single orders are moved to different tours or to SSS. 
Once a feasible tour is obtained, the minimum tour costs 
across all LSPs are determined based on spreadsheet cal
culations using the zone-based tariff schemes, and an 
LSP is selected for the execution of the tour. There is no 
reoptimization once a tour is defined, costs are assessed, 
and an LSP is chosen. Consequently, manual planning 
greatly depends on the intuition of a dedicated team of 
planners and poses some inefficiencies: 
• Manual planning consumes a significant share of 

the workforce and time (up to 32 person-hours) each 
day, binding valuable resources.

• The entire delivery region is divided into distinct 
regions to ease manual planning. No comprehensive 
and consistent planning across regions takes place.
• The sequential planning process without any reop

timization may not be cost-efficient. Because the opti
mal tour plan is unknown, there is no performance 
indicator for the cost efficiency of the tours.
• Tour length and duration limitations have some

times not been adhered to in the past because only a 
simplified check of tour length has been made with a 
standard map provider, and the LSPs have conse
quently rejected tours, resulting in additional replan
ning efforts.

DIY-R aims to improve its manual process and trans
portation efficiency. We develop a Decision-Support 
System for the Daily Routing (DSS-DR) for this purpose. 
Although applying the aforementioned zone-based 
tariff scheme with volume discounts is standard in 
freight forwarding, it is not yet widely used in model
ing and optimization approaches in the literature and 
routing software. In both research and applications, 
the usual method to account for transportation costs is 
based on the driving distance of the vehicles. However, 
the costs arising from the zone-based tariffs for the 
retailers differ because they depend on the delivery 
zones of the stores supplied and the total load of the 
tour. The DSS-DR was developed in a joint project over 
12 months with DIY-R’s supply chain optimization 
and planning departments to enhance planning effi
ciency and assess the actual transportation costs at 
DIY-R. To offer a user-friendly application, the tool is 
embedded into DIY-R’s workflow by interfacing rele
vant software such as spreadsheets (data input) and a 
map provider (solution display). Furthermore, we 
develop an exact three-component set partitioning 
algorithm that is flexible enough to cope with further 
constraints and other tariff schemes. Implementing 
DSS-DR provides an average of 8% distribution cost 
savings and significantly reduces the manual effort 
spent on daily transportation planning. Furthermore, 
using DSS-DR contributes to long-term company suc
cess by providing immediate decision support for daily 
operations and long-term evaluation of the zone-based 
tariff scheme, and thus for future decisions on the 
terms contracted with the LSPs.

The remainder of this work is structured as follows. 
Section Description of the Business Process details the 
underlying planning problem and manual process at 
DIY-R before Section Problem Classification and Related 
Literature analyzes related literature. Section Solution 
Method presents the methodology, and Section Benefits 
and Challenges details the benefits and challenges of the 
algorithm developed and its implementation at DIY-R, 
before Section Summary and Conclusion concludes the 
paper.
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Description of the Business Process
The business process coupled with industry standards 
regarding LSPs and their tariff schemes involves differ
ent departments and decision owners at DIY-R. It de
pends on legacy processes and human factors such as 
experience and intuition. To understand and emphasize 
the central role of operational daily tour planning and its 
interrelation with superordinate strategic and tactical 
planning at DIY-R, we first describe the entire distribu
tion planning and the underlying zone-based tariff in 
Section Tariff and Context of Distribution Planning. We 
then delineate the business process at DIY-R in Section 
Operational Tour Planning for Each Delivery Day and high
light shortcomings and improvement opportunities of 
this process in Inefficiencies and Improvement Potentials.

Tariff and Context of Distribution Planning
The zone-based tariff scheme is standard in freight for
warding and is used by LSPs to bill delivery tours. Based 
on its postal code, each store of DIY-R belongs to exactly 
one of several delivery zones defined by the LSPs. Stores 
that are farther away from a depot are allocated to 
higher zones. This subdivides the complete distribution 
area into mutually exclusive delivery zones and reflects 
the transportation distances between the depot and the 
stores. The zone-based tariff scheme of each LSP for SDT 
depends on the depot location, the most remote zone 
visited, the total load carried, and the number of unload
ing points. Table 1 is an example of the zone-based tariff 
scheme with all-units volume discounts for one depot 
and LSP combination.

The costs per load unit decrease with a higher total 
load on a tour. This all-units volume discount leads to a 
nonlinear cost function. Furthermore, the costs per load 
unit increase nonlinearly related to the most remote 
zone visited. For the actual costing, the cost factor of the 
load-zone combination is multiplied by the total load 
carried on the tour. Finally, each stop is associated with 
fixed unloading costs. The sum of all unloading costs is 
added to the total tour costs. For example, if the tour 
starts at the depot in Zone 1 and visits one store in Zone 
1 and two stores in Zone 2 with a total of eight load 
units, then the highest zone visited (in our example, 
Zone 2) and the load units carried (eight units) 

determine the costs per load unit that the retailer needs 
to pay the LSP. In the example, the transportation costs 
are 8× e77.70 and the unloading costs (not indicated in 
the table) for the three stops are 3× e63.20, which results 
in total tour costs of e811.20.

The specific tariffs of LSPs may vary in the number, 
definition, and assignment of zones; the costs for un
loading; and the price per load-zone combination. The 
structure of the tariff scheme is standard in freight for
warding for retailers, as it simplifies the cost calculation 
of the tours. It allows the costing of a delivery tour with
out detailed information on the sequence of the stores 
visited. This simplification significantly reduces the com
putational complexity that needs to be handled by the 
planners, as no explicit VRP needs to be solved. How
ever, this also implies that the retailer does not have 
exact information on the actual tour costs but relies on 
the costs resulting from the negotiated tariffs. At DIY-R, 
a strategic business unit is responsible for negotiating 
long-term tariff contracts with all LSPs.

Furthermore, the assignment of delivery days to each 
store poses a mid- to long-term decision problem. It 
depends on the store’s demand and its replenishment 
processes, as well as on fulfillment capacities in the 
warehouses and transportation. Like the tariff negotia
tion, the delivery day assignment is owned by a strategic 
business unit. Both are input (i.e., predetermined para
meters) for the operational transportation planning of 
the joint project with DIY-R.

Operational Tour Planning for Each Delivery Day
DIY-R operates three depots in close proximity, each 
with a specific assortment and distinctive inventory (i.e., 
no duplicate inventories). Consequently, a store may 
submit up to three different orders for its assigned deliv
ery days. Stores may order from all three depots, but 
also from just one or two depots. If necessary, the LSP 
consolidates the orders from the three depots before 
starting the delivery tour. The orders must be submitted 
by the stores three days ahead of the delivery day and 
include all required information on the products and 
volumes. Once all orders are submitted, the operational 
tour planning by the operational business unit starts. 
The orders scheduled for each weekday build the 

Table 1. Extraction from a Tariff Scheme Example: Costs per Load Unit

Total load of tour (units)

Most remote zone visited of tour

Zone 1 (e) Zone 2 (e) Zone 3 (e) Zone 4 (e) …

5 114.54 124.32 131.30 138.46 …
6 95.45 103.60 109.42 115.38 …
7 81.82 88.80 93.79 98.90 …
8 71.59 77.70 82.06 86.54 …
… … … … … …
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planning basis. In detail, four full-time employees desig
nated as planners construct the delivery tours. The plan
ning department further subdivides the entire delivery 
area into five distinct regions. This division eases trans
portation planning and limits the number of store orders 
that need to be handled by each planner. This also means 
that each store belongs to one of the planning regions. 
One planner is responsible for a specific region and 
solves the daily routing problem separately for this 
region while communicating closely with the corre
sponding LSPs. The planners collect information about 
the shipment’s content, origin, destination, size, weight, 
and load units within a database. Based on this informa
tion, the supply of all stores is planned for each day. The 
central aspect of the distribution planning is deciding on 
the delivery mode: SDT and SSS.

SDT with LSPs. The first and preferred option to supply 
DIY-R’s stores is via delivery tours executed by LSPs, 
which are generally cheaper than SSS. SDT constitutes a 
private and exclusive tour of the LSP in which only 
stores of DIY-R are approached. The manual tour con
struction logic at DIY-R follows three subsequent steps: 
(a) allocating store orders to tours, (b) checking duration 
and distance constraints for each tour, and (c) selecting 
the LSP.

Step (a): Allocating Store Orders to Tours. In the 
allocation phase, the planners assign store orders 
gradually to tours based on the proximity of store 
locations. The main goal of a planner is to achieve 
high vehicle utilization to exploit the volume dis
counts of the tariff scheme. The vehicle capacity is 
checked with the assignment of each additional store 
order to a tour. There are two types of vehicles with 
different capacities. The larger truck can hold 34 load 
units, whereas the smaller one carries only up to 17. 
Some stores in urban areas with vehicle width, height, 
and weight restrictions require deliveries by smaller 
trucks. The planners therefore need to ensure delivery 
to each store via a suitable vehicle. Furthermore, each 
store may order from the three different depots. With 
regard to the route planning for SDT, only the last vis
ited depot before deliveries is decision-relevant, as 
depots lie in close proximity and thus within the same 
starting zone across all LSPs. The depot from which 
the actual delivery tour starts together with the LSP 
selected determines the tariff scheme. Potential milk 
runs for order consolidation (i.e., approaching multi
ple depots) are priced in the tariff schemes. Usually, 
the orders of one store from different depots are com
bined on one tour to save transportation costs. Fur
thermore, time windows are not decision-relevant in 
our application, mainly because the stores are only 
delivered on predetermined delivery days, and just- 

in-time delivery and instant replenishment are usu
ally not necessary.

Step (b): Checking Tour Duration and Distance 
Constraints. After all the tours are built in Step (a), they 
are checked in Step (b) concerning tour duration and dis
tance restrictions. To do this, the tours’ estimated dis
tance and tour duration are assessed using a general 
online map service. The tour duration restrictions are 
based on governmental regulations (e.g., Directive 2003/ 
88/EC of the European Union) that limit the working 
time of each driver. The tour duration restrictions com
prise the driving time and the corresponding service 
times at all visited locations. Furthermore, because the 
costs of a tour do not explicitly depend on driven dis
tance, LSPs impose restrictions on the tour length by lim
iting the out-of-tour distance or detour. This out-of-tour 
distance measure is widely used in freight forwarding 
practice and is defined as follows. The assignment of a 
store to a tour increases the driving distance. This 
increase in driving distance may not result in a propor
tional cost increase for the retailer if no new and higher 
zone (i.e., a more remote and costly zone) is affected, but 
only the higher volume is billed. For instance, adding a 
store order of Zone 1 does not increase the distance- 
related costs if a store order of Zone 2 is already on the 
tour. Tour costs therefore increase only with respect to 
the total load, and the additional distance that needs to 
be covered comes free of charge. This complimentary 
distance increase that must be covered by the LSP can be 
considered a “detour” and is limited by the LSPs with a 
so-called detour factor. In the case of DIY-R, LSPs apply 
a relative detour factor. It indicates the maximum per
centage the distance of a tour may deviate from the 
direct connection between the depot and the furthest 
stop—that is, the zone relevant for the pricing (Lindsey 
et al. 2013, Khodabandeh et al. 2021). The restriction 
ensures that no extensive tours are constructed that 
exploit the weaknesses of the zone-based tariff. The rela
tive detour factor fits the zone-based tariff scheme as the 
possible detour increases with the integration of stores in 
more remote zones.

As the detour limitation is essential in our application, 
we will further illustrate it using a simple example. 
Figure 1 represents two potential delivery tours. Both 
tours start from the same depot (triangle) in the West, 
visit stores (dots) in the Northwest, and end at the id
entical and most distant store in the East. Tour A visits a 
further store in the Northeast, whereas Tour B visits 
another store in the South. According to the tariff 
scheme, both tours have identical costs according to the 
zone-based tariff when assuming an equal load. How
ever, the shortest route from the depot visiting all stores 
differs significantly. The corresponding detours calcu
lated amount to 4% for Tour A and 28% for Tour B. 
LSPs apply an upper limit for the relative detour. If the 

Tuma, Ostermeier, and Hübner: Optimal Transportation Planning for a Retailer with a Zone Tariff 
INFORMS Journal on Applied Analytics, 2024, vol. 54, no. 4, pp. 312–328, © 2024 INFORMS 315 



upper limit is 20%, this will likely result in the LSP’s 
rejection of Tour B. If a tour exceeds the detour limit dur
ing the feasibility check by the planner, the tour needs to 
be adapted, and further iterations are required. The 
orders affected must be reassigned to different tours or 
delivered via SSS with common carriers (see SSS with 
Common Carriers).

Step (c): LSP Selection. In the final step of determin
ing the tours with SDT, LSPs are selected based on costs 
for the tours and the availability of vehicles. This means 
the planners calculate the costs for each tour obtained 
from Steps (a) and (b) based on the LSPs’ zone-based tar
iffs. The lowest-cost LSP for a tour is identified based on 
spreadsheet calculations considering the individual tariff 
parameters of all available LSPs in a region. Further
more, the planners must adhere to the LSPs’ vehicle 
availability, meaning that selecting the cheapest LSP is 
not always possible. After the cost calculation, the final 
tours are communicated to the selected LSPs, which 
evaluate the tours in their interest and provide feedback 
on whether tours are accepted. Each planner follows 
Steps (a) to (c) sequentially and determines tours only 
for their delivery area. There is no continuous reoptimi
zation between the different steps.

SSS with Common Carriers. The second mode (SSS) to 
supply DIY-R’s stores is subcontracting single shipments 
to common carriers. This delivery mode does not require 
tour building by the retailer and only concerns single 
orders. The costs of a single shipment depend on the 
shipments’ origin, destination, and load units, and they 
increase linearly with load and distance. The resulting 
costs per load unit usually exceed the costs by SDT as 
long as sufficient capacity utilization is achieved. SSS 
should only be used in exceptional cases if tours cannot 
be built efficiently. This applies to small order sizes, for 

example, that do not justify an additional stop on a tour. 
Furthermore, the second delivery option eases the pro
cess for the planners. They may utilize this option to 
achieve feasibility if the tour capacity is exceeded or if 
adding a store to a tour would result in a large detour or 
violate the tour duration constraint. Common carriers 
consolidate these deliveries with further deliveries from 
other customers and perform the delivery to DIY-R 
stores. This means that the common carriers can usually 
achieve higher truck utilization for these deliveries. 
However, the collective shipments still allow competi
tive costs for the retailer.

Inefficiencies and Improvement Potentials
The business process involving different departments at 
DIY-R strongly depends on legacy processes, decision 
owners, and human factors such as experience and in
tuition. Consequently, the prevailing planning process 
poses some inherent inefficiencies. We highlight short
comings and improvement opportunities of this process, 
which we then address in Section Solution Method. The 
planners communicate closely with the LSPs in their 
region. Although this allows the gathering of LSP- and 
region-specific factors, it also implies dependencies and 
causes problems if a planner is unavailable (e.g., because 
of illness, holidays, or quitting). It also does not allow 
optimization across regions, as each planner only attends 
to their area. This approach results in region-specific 
planning solutions and inconsistencies across the re
gions. A further primary driver of the inefficiencies lies 
in complexity reduction through splitting the entire dis
tribution problem into separate, sequentially solved 
subproblems (see Steps (a) to (c)) without reoptimiza
tion. Additionally, decisions made in the process mostly 
rely on the experience or intuition of individual plan
ners. There is no control instance or indicator for the 
cost efficiency of tours planned. Last, manual planning 

Figure 1. Calculation of the Relative Detour Factor (Example) 
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consumes considerable workforce and time and may 
include human errors that require additional tours or 
replanning efforts.

Our decision support tool DSS-DR helps to overcome 
these drawbacks. DSS-DR integrates the different plan
ning steps and achieves a cost-minimal solution for daily 
distribution planning. This solution also ensures the 
acceptance of all tours because we directly integrate tour 
duration and detour restrictions into the tour building. 
The planning solutions are coherent across all days and 
regions and no longer depend on individual employees’ 
experience and decision making. DSS-DR covers the 
complete planning problem across all regions and thus 
increases overall savings via a concerted planning 
approach.

Problem Classification and 
Related Literature
Before we can relate the business problem described to 
the literature, we need to specify the underlying VRP to 
define the scope of the related research. The transporta
tion problem and its application at DIY-R have a large 
number of problem specifics and constraints resulting in 
a Rich VRP (R-VRP) (see also reviews, taxonomies, and 
frameworks of, e.g., Crainic et al. 2009, Vidal et al. 2013, 
Caceres-Cruz et al. 2014, Vidal et al. 2014, Lahyani et al. 
2015). Specifically, our daily operational routing problem 
resembles a VRP with multiple depots, in which each 
depot has a different assortment. For one tour, multiple 
depots might have to be visited before deliveries start. 
This setting can also be seen as a special case of a Pickup 
and Delivery Problem (Savelsbergh and Sol 1995), in 
which all pickups occur before the deliveries. Stores in 
densely populated, urban environments require smaller 
vehicles for delivery, whereas other stores can be sup
plied via large trucks. This requirement results in a het
erogeneous fleet (HF) of differently sized vehicles. The 
tariff scheme does not require the vehicles to return to 
the start depot, turning the problem into an open (O) 
VRP. External LSPs deliver store orders via two different 
modes such that the routing problem resembles a VRP- 
PC, with a private fleet (for the exclusive DIY-R tours) 
and common carriers. Multiple LSPs or carriers are avail
able in both modes, necessitating a carrier selection. The 
costs are dependent on a nonlinear zone-based tariff 
with volume discounts. Tours are restricted by vehicle 
capacity, tour duration, and distance. The distance re
striction is achieved by limiting the relative detour. Fol
lowing these problem specifics, the underlying planning 
problem can be denoted HF-O-VRP-PC with multiple 
depots. In the following, we first highlight related litera
ture on R-VRPs that have a similar setting and scope but 
apply linear cost functions. Second, we provide an over
view of related (R-)VRPs with nonlinear costs. Finally, 

we summarize the contributions in Table 2 and discuss 
open areas of research.

Related R-VRPs with Linear Cost Functions
The related R-VRPs are based on similar applications in 
which tours with multiple depots and tour duration 
restrictions must be built. However, the problems are 
based on linear cost functions. Sprenger and Mönch 
(2012) study an R-VRP arising in the German food 
industry, including multiple delivery modes in which 
multiple manufacturers share their fleets. Mancini (2016) 
solves a related R-VRP of an LSP featuring a heteroge
neous fleet. Their VRP variant includes multiple depots, 
but not every customer can be served by every vehicle 
or from every depot. Alcaraz et al. (2019) address a simi
lar R-VRP of an LSP with a heterogeneous fleet, addi
tionally considering two delivery modes. They propose 
heuristics handling outsourcing decisions, and the tours 
include driving and rest periods according to European 
regulations. The introduction of the second delivery 
mode leads to cost savings of 3%–7%. Finally, Kramer 
et al. (2019) study the case of an LSP delivering phar
maceutical products to healthcare facilities in Italy. Simi
lar to our application, they deal with incompatibilities 
between vehicles and customers and, hence, a heteroge
neous fleet.

(R)-VRPs with Nonlinear Cost Functions
One of the aspects of the application case that is most 
influential on the problem’s complexity and the solution 
method’s design is the nonlinear cost function resulting 
from the zone-based tariff and the volume discounts. In 
this paragraph, we therefore focus on the limited litera
ture on (R)-VRPs with nonlinear cost functions, similar 
to the case of DIY-R. Ceselli et al. (2009) propose an exact 
algorithm for a software company providing planning 
tools for R-VRPs with different extensions. The problem 
includes a heterogeneous fleet, carrier selection, two 
delivery modes, open tours, time windows at depots 
and customers, and order splitting. Tours are restricted 
by maximum length and duration but neglect detour 
limitations. The routing costs resemble a zone-based tar
iff and depend on the locations and number of stops, 
tour distance, and vehicle load. The costs are also subject 
to volume discounts. The authors propose an algorithm 
based on column generation and solve the problem with 
up to 30 customers. Ceschia et al. (2011) provide a solu
tion approach for a class of R-VRPs addressing a hetero
geneous fleet, carrier selection, tour duration restrictions, 
and two delivery modes. The problem stems from an 
Italian software solutions provider. The authors propose 
four different cost functions for the routing problem, 
including nonlinear functions, which are also applicable 
to model a zone-based tariff with volume discounts. 
Stenger et al. (2013) propose a VRP with nonlinear costs. 
This work considers single or multiple depots and two 
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delivery modes. The costs of one delivery mode are sub
ject to volume discounts. The authors approximate the 
nonlinear cost of this delivery mode by a piecewise func
tion and apply a heuristic solution algorithm. Dabia et al. 
(2019) present an R-VRP with a heterogeneous fleet and 
two delivery modes. Similar to Stenger et al. (2013), they 
apply a piecewise linear function to account for volume 
discounts. The authors present the first exact solution 
algorithm for this family of problems based on two dif
ferent branch-and-cut-and-price (B&C&P) formulations. 
Khodabandeh et al. (2021) provide a general framework 
for R-VRPs arising at an LSP in North America. The 
framework comprises carrier selection, multiple depots, 
multiple delivery modes, and different cost functions. 
One proposed cost function depends on the start and 
end of a tour and is nonlinear. The authors mention that 
the framework can address further tour restrictions, 
including a maximum travel time, distance, and absolute 
and relative detour. The authors propose a heuristic 
solution method based on a set partitioning formulation 
to solve real problem instances.

Linß and Tamke (2022) propose a VRP with Carrier 
Selection (VRP-CS) from the corrugated packaging in
dustry in Germany. The authors consider three different 
cost structures for the routing cost, including nonlinear 
tariff schemes, in which the cost per load unit depends 
on the total load carried. The problem is modeled using 
a three-index formulation and solved exactly with a 
Branch-and-Cut (B&C) algorithm.

Summary
Table 2 summarizes the related literature, provides addi
tional information on the solution methods and problem 
sizes, and highlights the contribution of our work.

In the first stream of related literature, we highlight 
R-VRPs motivated by practice that share related aspects 
with the problem at hand. All of these papers feature 
linear cost functions and apply heuristic solution ap
proaches. Despite introducing multiple modes and a car
rier selection problem, these models do not factor in 
zone-based tariffs, volume discounts, or detour limits. In 
the second stream of literature, we summarize (R-)VRPs 
with similar problem specifics while featuring nonlinear 
cost functions. The nonlinear costs are primarily based 
on related volume discounts. The majority of publica
tions apply multiple modes and carrier selection. With 
the zone-based tariff scheme, it is essential to consider 
the detour limitation to ensure tour acceptance by LSPs. 
However, there is no contribution developing an exact 
solution approach for a VRP with a nonlinear zone- 
based cost function and a relative detour limitation. We 
close this gap and contribute to both literature and 
industry. This study developed an easy-to-use tool to 
solve an R-VRP that occurs daily at a major European 
DIY retailer featuring versatile problem aspects. We Ta
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solve actual instances optimally with up to 150 stores 
and 450 store orders.

Solution Method
From a solution perspective, the problem at hand has 
several challenging properties. First, numerous practi
cal extensions (e.g., heterogeneous fleet, two delivery 
modes) and constraints (such as vehicle capacity, LSP, 
and truck availability) must be reflected within the 
problem formulation. Second, there is a zone-based tar
iff scheme with volume discounts resulting in non
linear costs. Third, the problem is characterized by a 
tour duration constraint and a distance-dependent 
detour limit. To precisely calculate the tour duration 
(including service time) and distance, an Open Travel
ing Salesman Problem needs to be solved for each tour. 
The orders are available three days ahead, and the 
manual planning takes more than a full working day, 
binding the workforce of multiple planners. As suffi
cient computation time and power are available, the 
goal of DIY-R is to achieve the best possible solution in 
the given time frame. Despite the problem size of up to 
150 stores per day, the problem structure and the scope 
allow us to address the aforementioned challenges by 
developing an exact time-efficient algorithm based on 
decomposition and problem-specific insights. One pre
dominant modeling approach in this context is the set 
partitioning formulation, introduced by Balinski and 
Quandt (1964). The formulation uses variables that rep
resent feasible vehicle tours, and the cost coefficients in 
the objective function reflect the total costs of a tour. 
The approach is intuitive and easy to follow for all par
ties involved (i.e., managers and planners). It applies a 
transparent computation process that fosters the adop
tion in practice (see, e.g., Guidotti et al. 2018). This was 
one central requirement at DIY-R for developing the 
solution approach; we discuss alternative solution ap
proaches in Section Discussion of Methodology.

Components of DSS-DR
DSS-DR operates in a three-step approach to increase 
traceability and consequently splits the planning prob
lem into three mutually independent components: 

1. the construction of a set of feasible tours (set con
struction component),

2. the cost calculation of the resulting tours (costing 
component), and

3. the exact solution of the set partitioning model 
(solution component).

Appendix A details the modeling and solution 
approach for the DSS-DR. In the following, we highlight 
the major parts only. In the (1) set construction component, 
we generate the complete set of all feasible tours. How
ever, the solution space can be significantly reduced by 
taking advantage of the hard constraints in our problem. 

These constraints imply that tours that exceed tour dura
tion and vehicle capacity do not have to be considered. 
The efficient generation of tours is crucial, as it is directly 
related to the number of variables and is thus the main 
driver for the run time. We introduce a tree-based algo
rithm with efficient pruning strategies for constructing 
tour candidates. The algorithm starts with a single store 
order and gradually adds further store orders to a tour. 
After each addition of an order to a tour, a routine checks 
the feasibility of the tour concerning tour duration, vehi
cle capacity, and detour. Violating the tour duration and 
capacity constraints leads to excluding the tour from fur
ther searches (pruning). The violation of the detour fac
tor does not lead to the pruning of a tour, owing to the 
dynamic nature of the factor—that is, a further insertion 
of a store order may reduce the detour factor and result 
in a feasible tour. This is a major driver of the complexity 
of the problem and the tree-based algorithm. Every feasi
ble tour is then included in the final set to ensure an 
exact solution. In the (2) costing component, we calculate 
the total costs of each feasible tour obtained. At this 
stage, the tool interfaces with DIY-R’s database to re
trieve the individual zone-based tariffs of the LSPs con
tracted. The tariffs are LSP-specific and depend on the 
depot a tour starts from (see Section Description of the 
Business Process). Each feasible tour is then priced for 
each available LSP and depot. This means we add each 
tour to the final set of candidates multiple times, once for 
each LSP and depot available. It does not suffice to add 
the minimal cost tour across all LSPs, as it might be nec
essary to select another LSP because of fleet size limita
tions. Last, in the (3) solution component, we solve the set 
partitioning model on the candidate tour set created 
with Gurobi (version 10.0.1). The structure of the model 
is as follows: The objective is to minimize delivery costs. 
The delivery costs consist of costs for the SDT delivery 
tours obtained in Component 2 for all LSPs and costs for 
single shipments with common carriers (SSS). The con
straints ensure that all store orders are delivered by one 
of the modes. Furthermore, an LSP can only execute a 
delivery tour if sufficient vehicles of the correct type are 
available. After this step, we obtain the cost-minimal 
delivery tours and assignments to common carriers. To 
support the next steps of the planning process, the solu
tions are visualized via Microsoft Excel spreadsheets, 
and all delivery tours are further plotted on a map. 
Alongside the actual delivery tours and the SSS as
signment, the spreadsheets include information on the 
selected LSPs, cost, and load units of each tour and ship
ment. Finally, the SDT tours and SSS assignments are 
passed on to the LSPs and common carriers.

Discussion of Methodology
Strengths and Limitations of DSS-DR. DSS-DR consti
tutes a problem-tailored exact approach for the HF-O- 
VRP-PC with multiple depots at DIY-R. It achieves 
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optimal solutions to the industry problem with non
linear zone-based tariffs and its numerous restrictions. 
The methodology is easily explainable to practitioners 
because it follows the general structure of the previously 
applied manual approach at DIY-R. The constrained 
nature of the industry problem permits the evaluation of 
all feasible tours and substantially limits computation 
time spent in the search tree. The algorithm can be 
extended to incorporate further restrictions. On the 
downside, DSS-DR does not constitute a general tool for 
distribution problems with significantly different 
structures, such as less constrained routing and ex
tensively long tours. It may be transferred to other 
applications with a zone-based tariff and a similar 
level of “constrainedness.”

Alternative Approaches. R-VRPs are complex pro
blems, and the same holds true for our HF-O-VRP-PC 
with multiple depots. As such, we evaluated alternative 
approaches for the implementation of DSS-DR in the 
course of the project. Unlike for our application, the com
paratively high run times may not be acceptable for 
applications for which fast solutions are needed. In these 
settings, heuristic approaches may be a reasonable alter
native when no optimal solution is required (see, e.g., 
Hu et al. 2022). Metaheuristic solution algorithms are fre
quently applied in this context (see, e.g., Montoya-Torres 
et al. 2015). The underlying problem structure at DIY-R 
may be suitable for methods that decompose the prob
lem in an iterative manner into smaller subproblems 
that are solved separately and then merge the subpro
blems to obtain a complete solution. A further option 
would be ruin-and-recreate methods (such as an Adap
tive Large Neighborhood Search) exchange parts of an 
initial solution and evaluate the exchange of nodes or 
arcs within a tour. Heuristics usually convince through 
run-time efficiency—that is, they often require a fraction 
of time to reach good solutions. Drawbacks of advanced 
heuristics are potential nonoptimal solutions or a lack of 
information about the goodness of a solution. Although 
their general idea is often easy to follow, the actual 
implementation may be cumbersome to understand, 
and heuristic elements (e.g., when the search procedure 
follows certain nature-inspired patterns or uses random 
elements) are not intuitive for practitioners and tool 
users, leading to trust issues with regard to the solution 
quality. DIY-R therefore explicitly expressed the need for 
an optimal approach in which functioning and computa
tion steps can be easily communicated to all involved 
parties. We further considered the use of a branch-and- 
cut approach and modeled a relaxed version of the 
application case as a MIP, solved by Gurobi. Yet this 
approach was only suitable for instances of up to 25 
stores. Another state-of-the-art approach is branch-and- 
price (B&P), which assumes a linear cost function and a 
convex solution space for an efficient solution of the 

underlying pricing (shortest path) problem. In our 
case, most efficiency potential is lost in the resource- 
constrained shortest path problem because the relative 
detour restriction prevents the pruning of paths. This is 
because the inclusion of another store may lead to a lower 
detour. Moreover, the exact approaches mentioned are 
based on a complex search strategy that requires a deep
ened understanding of mathematical solution procedures.

Benefits and Challenges
This section discusses the benefits for the retailer result
ing from the use of DSS-DR and the challenges that 
occurred during the implementation. DSS-DR has been 
developed with DIY-R in regular feedback loops and 
joint workshops. The direct input of the planners and 
the DIY-R optimization department during the develop
ment of DSS-DR and their feedback on the results con
tributed significantly to the project’s success. This section 
provides an overview of the results and a comparison 
with the status quo, applying DSS-DR. Appendix B con
taines detailed numerical results.

Improvements via Implementation of DSS-DR
The main benefit of DSS-DR is the structured and compre
hensive planning process. The tool determines optimal 
solutions for the real-world routing problem. Embedding 
DSS-DR into the operational processes helped to identify 
inconsistencies in the manual process routines and ineffi
ciencies in the tour determination. Furthermore, it reduces 
the planning effort and working time required by en
abling automated calculations. The easy-to-follow meth
odology encourages practitioners to occupy themselves 
with the approach and its results. DSS-DR can be further 
leveraged for price negotiations with LSPs and applied 
for overarching strategic planning. We detail the benefits 
of implementing DSS-DR at DIY-R as follows.

Significant Cost Savings. The total cost savings of 
introducing DSS-DR can be attributed to distribution cost 
savings, workforce savings, and further positive impacts 
on other planning tasks. Total savings exceed e1 million 
per year. The distribution cost reduction amounts to an 
average of 8% compared with the status quo at DIY-R. In 
absolute terms, these are savings of around e750,000 per 
year (see Tables B.1 and B.2). The significant savings can 
be explained by the integrated planning approach that 
enables comprehensive planning across all delivery 
areas. This contrasts with the prevailing planning, in 
which each planner was only responsible for one distinct 
area and for optimizing tours within this area. In particu
lar, tour optimization is a major driver for cost savings as 
more store orders are distributed via delivery tours, and 
fewer are sent via costly common carriers (see Table B.3). 
With the application of DSS-DR, the share of store 
orders shipped with common carriers decreases from an 
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average of 41%–17%. The planners tended to move non
fitting orders to common carriers and thus used the more 
expensive SSS to ease the planning. Furthermore, manu
ally planned tours do not fully utilize the available tour 
duration, as vehicle capacity utilization was often the first 
binding constraint within the manual planning process 
(see Table B.4). The exploitation of both tour duration 
and vehicle capacity saves costs in the tariff scheme 
because zones—not driving times/distances—are billed 
and volume discounts apply.

DSS-DR guarantees adherence to all contractual 
requirements while fully exploiting the given bound
aries and the cost-minimization potential. Alongside the 
immediate impact on tour efficiency, DSS-DR enables a 
more efficient workflow and process, requiring fewer 
working hours. Considering four planners were needed 
for manual daily distribution planning, DSS-DR signifi
cantly contributes to streamlined and more time-efficient 
planning. The average daily planning effort could be 
reduced by 50% using DSS-DR, which reflects personnel 
cost savings of about e150,000–e200,000 per year. The 
supply chain business unit profits from the freed-up 
working capacities of planners because they can be used 
to address other optimization tasks, such as optimizing 
delivery frequencies and inventories. Hence, the project 
laid the foundation for additional process enhancements 
and further cost savings.

Unification, Planning Support, and User Accep
tance. DSS-DR enables coherent solutions across all 
weekdays and the entire delivery area. Whereas the 
routing was determined for each delivery region and 
day independently and was subject to individual exper
tise in the past, introducing a tool for the entire planning 
problem eliminates bias and enables unified distribution 
planning. DSS-DR ensures the same decision logic for 
each planning day. Major points for improvement are 
considering the distribution problem as a whole and 
assessing every feasible tour instead of dividing the dis
tribution problem into subproblems for each planner in 
the status quo. The primary differentiator of DSS-DR is 
therefore to evaluate every possible alternative. Further
more, analyzing the manually planned tours reveals 
high variations in the detour proposed by the planners 
(see Table B.5). In many cases, the actual detour violates 
the defined detour limitation. A high detour usually 
results in a rejection of tours by the LSPs, requiring in
tensive replanning efforts and costs. The detour allowed 
should be fully exploited for cost-efficient planning, but 
the maximum detour should always be adhered to. DSS- 
DR ensures both. DSS-DR interfaces DIY-R’s planning 
software and standard tools such as Microsoft Excel. 
Consequently, planning data (store orders, costs, etc.) 
are automatically imported, and output data, including 
single shipments, delivery tours, and selected LSPs, 
are automatically generated. Additionally, a graphical 

representation of the results makes them easier to inter
pret for planners. Interfaces with other software used at 
the retailer and graphical representation of the results 
further contribute to the acceptance of the tool by the 
planning team. Finally, unlike complex black-box 
approaches such as B&P or advanced heuristics, the solu
tion procedure developed is easy to understand and fol
lows aligned planning steps familiar to planners.

Adaptability for Future Needs and Applications. DIY- 
R’s manual process strongly depends on hard-to-replace 
and highly specialized planners who follow legacy pat
terns. DSS-DR discards many of these dependencies on 
individual experience and planners’ skills by providing 
a holistic and easy-to-customize framework. This is nec
essary because of dynamically changing settings. Rapid 
and frequent changes in markets and supply chains 
have recently become the norm (e.g., move to omnichan
nel, lockdown restrictions during the COVID-19 pan
demic, inventory rationing due to supply chain issues). 
Short-term requests to change delivery days and corre
sponding adaptions of the daily routing problem may 
cause further disruptions (e.g., due to rush orders and 
public holidays). Consequently, DIY-R called for an 
adaptable and flexible approach that is resilient to exter
nal changes that impact the entire setting. DSS-DR is 
based on a solution approach that can be easily custom
ized. Arbitrary objective functions and constraints could 
be included if needed. DSS-DR only requires an adap
tion of input data and, for example, updated delivery 
plans that can be easily integrated into route optimiza
tion. This adaptability leads to a tool capable of addres
sing future organizational changes or industry needs 
(e.g., different delivery modes and carriers) and builds 
the basis for future developments (e.g., the introduction 
of delivery time windows).

Applying DSS-DR for Negotiations and Strategic Plan
ning. The retailer faces challenges due to the zone-based 
tariff scheme on different hierarchical levels. On a strate
gic level, specifying and negotiating the cost structure 
and the specific parameters of the tariff scheme with all 
LSPs is of interest. However, negotiating tariff costs and 
structure requires a thorough knowledge of routing 
costs. DSS-DR provides exact and detailed information 
of these costs and increases the transparency of possible 
tariff cost calculations. DIY-R can leverage this informa
tion for tariff negotiations. For example, we show that 
the detour is decreased within the optimal routing solu
tions (see Table B.5). This results in cost benefits for the 
LSPs that may be shared with DIY-R. Furthermore, 
assigning delivery days to each store poses a mid- to 
long-term decision problem. In this context, DSS-DR 
may provide decision support to some extent by evaluat
ing a possible changed assignment for single days.

Tuma, Ostermeier, and Hübner: Optimal Transportation Planning for a Retailer with a Zone Tariff 
INFORMS Journal on Applied Analytics, 2024, vol. 54, no. 4, pp. 312–328, © 2024 INFORMS 321 



Challenges During the Implementation of DSS-DR
When conducting an optimization project with an indus
try partner, several challenges must be mastered. In our 
case, these include identifying the actual planning pro
cess and scope, data issues, software development, and 
the industry partner’s specific traceability and flexibility 
requirements. Although some of these hurdles resulted 
in deviation from the initially defined timeline, an agile 
process and regular consultations between all parties sig
nificantly helped to overcome all obstacles. The main 
challenges that we faced are summarized as follows.

Deriving the Explicit Formulation of the Industry Prob
lem and Identifying the Manual Planning Process. A 
significant challenge that took several months to over
come was the precise specification of the actual decision 
problem as well as the manual approach of the retailer. 
The different planners apply skills from their long train
ing to plan delivery tours. A planner may combine cer
tain stores into a tour based on past tours, for example. 
Experience and intuition lead to decisions that may be 
hard to verbalize explicitly. DIY-R has not explicitly spe
cified the decision problem and the approach to obtain 
good solutions. As the manual distribution planning 
involves different business units and includes numerous 
limitations and actions, a large amount of implicit 
knowledge had to be collected and discussed to specify 
explicit objectives, constraints, steps, and methods. A 
fundamental difficulty in the clear specification of the 
problem was the definition of constraints that were pre
viously only intuitively adhered to. This lack of defini
tion led to inconsistent solutions between planners in the 
manual process. One example of these implicit con
straints is the relative detour factor. The factor was not 
clearly defined in the past, and distance restrictions were 
incorporated using simple tools for approximation and 
vague guidelines. The historical tour data highlight that 
the detours of tours constructed significantly differ 
between individual planners. A clear definition of the 
detour allowance is essential to ensure the acceptance of 
tours by the LSPs and cost-efficient planning. We there
fore initiated a process for explicitly defining a binding 
detour factor by the LSPs. To master the entire tool 
development process, close collaboration between all 
teams involved was crucial. All decision-relevant aspects 
of the problem and the process were analyzed in joint 
workshops. Once the manual planning process was well 
defined, the requirements for DSS-DR could be speci
fied. An agile software development process, including 
regular feedback loops, was established to manage and 
structure all these tasks. Prototypes were developed, 
intensively discussed, and tested at certain project sta
tuses with DIY-R. This procedure also revealed shortcom
ings of the manual process, such as constraint violations 
and suboptimal rules for assigning store orders to com
mon carriers (SSS).

Data Collection and Interfaces. Some planners relied 
more or less on their experience—that is, they followed 
their daily planning routine and did not maintain clean 
master data. This resulted in coping with poorly accessi
ble, unstructured, and missing data, particularly if the 
data needed to be retrieved from different systems or if 
different business units owned them. Some data needed 
for running DSS-DR were not yet available at DIY-R. For 
example, no explicit routing in the manual approach at 
DIY-R meant that the travel distances between stores 
were not directly available. These data had to be col
lected via online application interfaces. In general, data 
for operational tour planning had only been used to a 
certain extent and were not structured. Consequently, 
the data could not be used seamlessly as an input to 
DSS-DR at the beginning of the project. Extensive data 
cleaning and processing were critical to aligning data 
inputs. On the other side of the spectrum, the output of 
DSS-DR needed to be easily understandable and quickly 
interpretable by the employees of DIY-R. These require
ments called for problem-specific interfaces to standard 
software used at the retailer to integrate DSS-DR into the 
daily workflow.

Mathematical Complexity of the Decision Prob
lem. Once all procedural hurdles had been mastered 
and the decision problem had been defined properly, a 
major challenge was to provide a comprehensive model 
formulation and solution approach for the problem at 
hand. Both parts need to be understandable for the users 
to ensure the acceptance and application of a new tool. 
DSS-DR was therefore required to map the complex 
R-VRP of a large retailer, delivering up to 150 stores 
daily, and needed to be intuitive and easy to grasp at the 
same time. The set partitioning formulation perfectly 
suits both requirements because it reduces the problem 
to the essential decisions, using complete (feasible) tours 
as input variables for the optimization. From a methodo
logical perspective, the critical requirement was to 
achieve a preferably optimal solution in the time win
dow between the submission of orders and the delivery 
phase of three days. Furthermore, the algorithm had to 
be as traceable as possible to ensure acceptance by the 
planners. After thoroughly considering all alternatives, 
we decided on an exact approach that spans three differ
ent components, similar to the manual process. We 
explicitly decided against heuristics and other simplifica
tions, such as restricting the number of stores in one 
delivery tour, in order to ensure optimality and enable 
a well-founded cost assessment and comparison. Our 
approach uses the highly constrained structure of feasi
ble tours to cope with the computational complexity of 
an exponentially growing number of possible tours as 
store orders increase. The first component of DSS-DR, a 
tree-based preprocessing algorithm, uses efficient prun
ing strategies to avoid exploring nonfeasible tours and 
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significantly reduces total computation times. This en
abled us to provide optimal solutions as DIY-R requires 
and to incorporate all industry-relevant constraints.

Traceability and Acceptance of the Approach. As the 
team of planners was very confident in their ability to 
plan efficient delivery tours, one main challenge of the 
industry project was the acceptance of the software tool. 
This requires incorporating explicit and tacit knowledge 
of the planners in the tool so that the planners’ decision- 
making calculus is sufficiently mirrored and planners’ 
decision making is efficiently supported. We considered 
high transparency of the decision making within the tool 
and traceability of the algorithm as a primary goal from 
the beginning of the collaboration. Our project demon
strated that the more the newly developed process is 
based on the manual planning practice concerning objec
tives and constraints, the higher the willingness is to 
replace a manual planning solution with an automated 
tool. DSS-DR therefore has a very similar logic to the 
manual planning process. First, tours are built. Second, 
tour costs are calculated. Third, final tours and LSPs are 
selected. The solution steps are thus not a black box to 
the planners. DSS-DR, by name, is meant as a decision 
support tool and not as a replacement for the manual 
approach. To master exceptional challenges occurring in 
the daily process, the planners’ multiyear experience is 
required. This means planners can evaluate different sce
narios with DSS-DR.

Summary and Conclusion
We developed and implemented the DSS-DR tool to 
optimally solve the R-VRP of a European DIY retailer 
delivering to up to 150 stores per day. The problem in
cludes a zone-based tariff scheme with volume dis
counts, two delivery modes, detour, and tour duration 
restrictions. Further extensions include a heterogeneous 
fleet and carrier selection. DIY-R previously solved this 
daily planning problem using a manual approach that 
was strongly reliant on implicit factors such as the experi
ence and intuition of a team of planners. We defined the 
daily distribution problem and the manual solution pro
cess with DIY-R. Working from this definition, we built a 
decision support tool based on a three-component set 
partitioning algorithm. It provides optimal solutions to 
the problem in sufficient time while adhering to the deci
sion logic of the planning team. The underlying algo
rithm of DSS-DR can be accelerated by using advanced 
pruning techniques for the tree search. This trades com
prehensibility for algorithmic efficiency (Buijs et al. 2016). 
The first component of DSS-DR generates all feasible 
tours. The second component calculates the cost of these 
tours according to the zone-based tariff scheme. The third 
component uses a commercial solver to select the deliv
ery mode for each store order. DSS-DR interfaces relevant 

applications for input and output and ensures a user- 
friendly application and seamless integration into DIY- 
R’s planning.

The industry project led to cost savings of more than 
e1 million per year, strict adherence to all specified 
requirements such as detour and driving time limitations, 
and automation of the whole process. The three- 
component structure provides easy adaptability to future 
needs and ensures comprehension and high acceptance 
by the planning department. The solution to the opera
tional problem enables future projects to improve the 
decision processes. On the tactical level, a more efficient 
allocation of stores to weekdays is of interest. On a strate
gic level, renegotiating the tariff scheme is an open topic. 
As DSS-DR enables thorough planning and a detailed 
assessment of routing costs, this knowledge can be lever
aged to evaluate costing within existing tariff schemes. In 
the long run, regular evaluation of the costs of the two 
delivery modes enables the retailer to compare prices 
offered by LSPs with the actual delivery costs. The study 
confirms that the application of operations research 
methods to real-world problems can lead to significant 
benefits including large cost savings as shown in other 
contributions (Fadda et al. 2018, Holguı́n-Veras et al. 
2018, Khodabandeh et al. 2021).
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Appendix A. DSS-DR Implementation 
and Components

Appendix A details the three components of the solution 
approach, namely (1) the set construction component, (2) the 
costing component, and (3) the solution component for the opti
mal allocation of final tours to LSPs and single shipments 
to common carriers. We describe the integration of the sin
gle components in DSS-DR in the pseudocode of Algorithm 
A.1. The notation used is summarized in Table A.1.

1. Set construction component
We use a tree-based structure to construct the set of all 
feasible vehicle tours (see Figure A.1). The algorithm pre
processes all feasible tours and reduces the solution space 
by efficiently pruning parts of the tree at the same time. 
The construction process is initiated for each depot d, and 
each tour begins at this depot. In the first step, the algo
rithm appends every store order candidate k of the set of 
store orders Kd of depot d (with Kd ⊆ K). In the following 
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steps, all resulting tours are further appended by the 
remaining store order candidates from the entire set of 
store orders K and checked for feasibility. As each store 
order k is uniquely associated with a certain depot d, trav
eling from and to this depot is also considered. The imple
mented algorithm repeats this process until no more 
feasible tours can be constructed.

There are three criteria for feasibility: The tour must not 
exceed the capacity limit of the largest applicable truck for 
the store order, the tour duration, and the relative detour. To 
prove adherence to the tour duration and detour restrictions, 
the tour length must be calculated at each node. The shortest 
distance for a tour is calculated by solving an Open Traveling 
Salesman problem with a dynamic programming algorithm 

(Held and Karp 1962). If a tour becomes infeasible because of 
the vehicle capacity or tour duration constraint, the tour is 
not further extended with additional store orders, and the 
branch is pruned. Owing to the possibility of feasible super
sets of infeasible tour sets resulting from the relative detour 
restriction, a violation of the detour constraint only results in 
excluding the considered tour from the final set. In this case, 
no pruning can be performed.

2. Costing component
We calculate the tour costs cij of each feasible tour i, i ∈ I from 
(1) according to the specific zone-based tariff schemes for 
each possible LSP j, j ∈ J, where I denotes the set of feasible 

Table A.1. Notation for the Set Partitioning Model

Index sets
D Set of depots
I Set of feasible tours
Ik Set of feasible tours that include store order k
Iv Set of feasible tours that must use a vehicle of type v
J Set of LSPs for delivery tours
K Set of store orders
Kd Set of store orders at depot d
N Set of common carriers for single order shipments
V Set of vehicle types

Parameters
Ujv Total number of vehicles of type v available for LSP j

Cost parameters
cij Costs for subcontracting delivery tour i to LSP j
ckn Costs for subcontracting single store order k to common carrier n

Decision variables
xij Binary: 1, if a tour i is subcontracted to LSP j; 0 otherwise
ykn Binary: 1, if a store order k is delivered with common carrier n; 0 otherwise

Figure A.1. Representation of the Tree-Based Preprocessing Algorithm 
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tours and J the set of potential LSPs for delivery tours. In 
Algorithm A.1, the function Costs() invokes this component.

3. Solution component
We formulate the problem as a Set Partitioning Problem 
to select the optimal set of feasible tours (see similar ap
proaches, e.g., in Balinski and Quandt 1964, Agarwal et al. 
1989). In the Set Partitioning Model, the variables repre
sent tours executed by an LSP and assignments of single 
shipments to common carriers. The corresponding cost 
parameters reflect the total costs of an LSP tour and a 
common carrier shipment. This structure ensures a flexible 
and easy-to-extend model. In the Algorithm A.1, the func
tion SP() represents the Set Partitioning Formulation.

Min
X

i∈I

X

j∈J
cij · xij +

X

k∈K

X

n∈N
ckn · ykn (A.1) 

subject to
X

i∈Ik

X

j∈J
xij +

X

n∈N
ykn � 1 ∀k ∈ K (A.2) 

X

i∈Iv

xij ≤ Ujv ∀j∈ J,v∈V (A.3) 

X

i∈I
xij ≤

X

v∈V
Ujv ∀j∈ J (A.4) 

xij ∈ {0,1} ∀i∈ I, j∈ J (A.5) 
ykn ∈ {0,1} ∀k∈K,n∈N (A.6) 

Objective Function (A.1) minimizes the total transporta
tion costs. These costs include the costs for delivery tours 
(SDT) and single shipments with common carriers (SSS). 
Next to the sets I, J, and K introduced above, there are 
four further sets. Set N denotes all common carriers, and 
set V includes all vehicle types. Set Ik holds all feasible 
tours that include store order k, and set Iv includes all feasi
ble tours for vehicle type v. The binary variable xij is one if 
tour i served by LSP j is selected and zero otherwise. The 
costs for directly shipping store order k by common carrier 
n are represented by the parameter ckn. The amount depends 
on the order volume and travel distance of the store k and 
is externally given by the common carriers. The binary vari
able ykn is one if a store order k is directly shipped by com
mon carrier n and zero otherwise. Constraints (A.2) ensure 
that each store order is either fulfilled via a delivery tour or 
shipped with a common carrier. Constraints (A.3) and (A.4) 
enforce truck availability restrictions. Each LSP has a limited 
number of differently sized trucks that can be used for ful
filling tours. The maximum number of available trucks of 
type v of an LSP j is denoted by Ujv. Constraints (A.5) and 
(A.6) determine the domains of the variables.

Pseudocode of DSS-DR
The pseudocode of Algorithm A.1 summarizes the func
tioning of DSS-DR and the three components described 
above. The code delineates the entire solution procedure. 
First, the function Generate_tours() generates all feasible 
tours. Second, the function Costs() prices the feasible 
tours. Last, the function SP() solves the Set Partitioning 
Model to determine the cost-optimal delivery plan.

Algorithm A.1. (DSS-DR Pseudocode)
Final_tour_set � empty set //feasible delivery tours
Final_tour_set_with_costs � empty set //feasible delivery 
tours with costs
D � number of Depots
for d � 1 to D do

Final_tour_set � Final_tour_set:add(Generate_tours(d))
end for
Final_tour_set_with_costs � Costs(Final_tour_set)
Solution � SP(Final_tour_set_with_costs)
return Solution
function Generate_tours(d) //preprocessing algorithm

Evaluation_tour_set � feasible single-store-order tours 
from depot d //tours for evaluation
Final_tour_set_d � empty set //feasible tours starting 
at depot d
|K | �total number of store orders
while Evaluation_tour_set not empty do

tour � Evaluation_tour_set:get_some_tour()
Evaluation_tour_set:remove_tour(tour)
M � highest store order ID of tour
if M not equal to |K | then

for O �M+ 1 to |K | do
succ_tour � tour:add_store_order(O)
if succ_tour:get_shortest_duration() ≤ duration_res- 
triction then

if succ_tour:get_capacity() ≤ capacity_restriction 
then

if succ_tour:get_shortest_detour() ≤ max_ detour 
then

succ_tour:add_missing_depots()
Final_tour_set_d:add(succ_tour())

end if
Evaluation_tour_set:add(succ_tour)

end if
end if

end for
end if

end while
return Final_tour_set_d
end function

Appendix B. Computational Results
To compare the manual planning approach at DIY-R with 
DSS-DR, we present the results of both approaches for an 
exemplary planning week at DIY-R. We use a personal com
puter with an AMD 5950X processor and 64 GB of memory 
for all computations. Table B.1 shows that DSS-DR achieves 
delivery cost savings of up to 10% per planning day and, 
on average, 8% across the entire week for the defined detour 
factor of 1.2. In absolute terms, the savings amount to 
around e750,000 per year for transportation costs.

Table B.2 presents a run-time analysis of our approach 
across all days of an exemplary week at DIY-R. The table 
divides the run time into the solution approach’s three 
components. Generally, the first component is the most 
time-critical. “Wednesday” is a specific delivery day with 
many small orders and the highest demand, whereas 
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“Thursday” is usually a day with lower delivery volume 
and orders. The run-time performance was obtained using 
a single core, and no parallelization of the tree search was 
applied.

Table B.3 shows a comparison of the manual approach 
and DSS-DR concerning the number of tours (SDT), aver
age number of stops per tour, and percentage of store 
orders delivered by common carriers (SSS). The manual 

Table B.1. Comparison of the Manual Process and DSS-DR Regarding the 
Relative and Absolute Daily Savings in Transportation Costs

Weekdays Absolute savingsa (e) Relative savingsb (%)

Monday 2,481 6.6
Tuesday 3,583 10.2
Wednesday 3,605 7.5
Thursday 1,547 8.6
Friday 3,086 7.0
Total week 14,303 7.8

aAbsolute savings using DSS-DR vs. manual approach.
bRelative savings using DSS-DR vs. manual approach.

Table B.2. Computation Times for the Three Components of DSS-DR, in Seconds

Weekdays

Number Computation time (sec.)

Component 1 
(Construction)

Component 2 
(Costing)

Component 3 
(Solution) Total time

Number of 
tours (mil.)aStores Orders

Monday 124 381 15,940 256 249 16,445 1.794
Tuesday 96 297 24,412 452 419 25,283 3.144
Wednesday 143 438 88,354 2,153 2,060 92,567 11.214
Thursday 66 207 348 19 9 376 0.110
Friday 123 378 14,861 324 322 15,507 2.245
Avg. week 110 340 28,783 640 611 30,036 3.701

aTours resulting from the first component of DSS-DR.

Table B.3. Comparison of the Manual Process and DSS-DR Regarding the Number of Tours (SDT), Average Number of 
Stops per Tour, and Percentage of Store Orders Delivered by Common Carriers (SSS)

Weekdays

Manual approach DSS-DR

Number of toursa Avg. # of stops Share of SSS (%) Number of toursa Avg. # of stops Share of SSS (%)

Monday 27 2.15 39.0 33 2.33 16.0
Tuesday 32 2.31 40.7 41 2.51 13.1
Wednesday 12 2.08 45.0 15 2.33 16.8
Thursday 30 2.27 39.1 38 2.45 21.8
Friday 30 2.33 38.4 35 2.60 17.2
Avg. week 26.2 2.23 40.5 32.4 2.44 17.0

aNumber of SDT delivery tours.

Table B.4. Comparison of the Manual Process and DSS-DR Regarding Average and Maximum Durations of Delivery Tours 
(SDT), in Minutes

Weekdays

Manual approach tour duration DSS-DR tour duration

Average Maximum Average Maximum

Monday 144 266 198 479
Tuesday 121 281 154 432
Wednesday 142 265 195 471
Thursday 115 220 150 430
Friday 147 268 217 462
Avg. week 134 261 183 455
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approach relies more on single shipments (SSS), whereas 
DSS-DR plans more delivery tours (SDT).

Table B.4 shows that while the manual solution under
utilizes the maximum tour duration of 480 minutes with a 
maximum duration of 281 minutes, the optimized approach 
with DSS-DR plans tours with a duration of up to 479 min
utes. This indicates that in the manual approach, planners 
tend to build smaller tours, which may be ascribed to the 
high manual planning effort of building larger tours with 
more stores.

The detours reveal a different story (see Table B.5). On 
average, the manual approach constructs tours with about 
8.5% of detour, whereas DSSDR builds tours with about 
7.5% of detour. This lower average detour means that the 
tours are more cost-efficient for the LSPs. These efficiency 
gains could potentially become further savings for DIY-R. 
DSS-DR strictly adheres to the given detour limit of 20%; 
the manual approach exceeds this limit in 10.7% of the tours 
created. The highest relative detour is more than 40%.
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