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Abstract. Walmart takes a holistic approach to its supply chain, which integrates strategic 
and operational decisions consisting of three components: (1) network planning and trans
formation, which recommends the long-term network with step-by-step recommendations 
on how to achieve the end state; (2) a routing and loading system (Load Planner), which 
determines how to efficiently move products across the network; and (3) a simulation plat
form, which combines strategic and executional decision engines to enable a holistic 
decision-making process. Walmart built a set of scalable and fast optimization decision 
engines and deployed them using underlying innovative algorithms and models. The com
pany fully adopted this next-generation optimization capability throughout its entire gro
cery supply chain in the United States, and approved optimization model-based network 
design and transformation plans for long-term investments involving billions of dollars. 
As a result of this efficient routing and loading executional system, Walmart prevented 
98.6 million pounds of CO2 emissions and saved $91.5 million by eliminating 108,000 truck 
routes covering 33 million miles in fiscal year 2023 (FY23). Moreover, this optimization- 
empowered decision framework is evolving and transforming Walmart’s supply chain 
while keeping its Every-Day-Low-Price (EDLP) promise to its customers.

Keywords: Edelman Award • supply chain optimization • network design • simulation • truck routing and loading •
mixed-integer programming • metaheuristics

Walmart Supply Chain
Walmart operates a complex system of supply chain facil
ities in the United States. This includes 117 distribution 
centers (DCs), 26 fulfillment centers, 3 sortation centers, 
96 transportation offices, around 600 Sam’s Clubs, and 
more than 4,700 stores, which cover 90% of the U.S popu
lation within a 10-mile radius. This massive supply chain 
network serves as the backbone for providing customers 
with a seamless and convenient shopping experience.

One of the critical foundations of Walmart’s supply 
chain operations is the applications and systems that 
support supply chain management across the decision 

tiers from strategy to execution. The work we describe 
in this paper is the most recent step in the evolution of 
these applications and systems.

Need for Next-Generation Optimization 
Capabilities
Walmart is a leading retailer whose customers can 
choose to shop in stores, pick up orders at curbside, or 
have their orders delivered from our stores to their 
homes. The transition into an omnichannel retailer 
brought significant changes in the demand patterns 
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that its brick-and-mortar stores faced. Furthermore, the 
macroeconomic changes caused by COVID-19 have 
brought greater ambiguity to consumer demand. In an 
era of high inflation, people rely on Walmart and its 
Every-Day-Low-Price (EDLP) promise. Meanwhile, the 
recent advancements in warehouse automation tech
nologies, especially in the cold chain space, have 
unlocked enormous potential to dramatically improve 
productivity. Therefore, strategically transforming the 
supply chain network, on a large scale and in a short 
timeframe, was essential. The fast-changing demand 
patterns with high ambiguity created and continue to 
create unprecedented challenges for us as we seek to 
build resilience into our supply chain.

At the execution level, Walmart has a rich history of 
adopting industry-leading supply chain optimization tech
nologies to continuously drive operational costs down. It 
has reached a point where any incremental cost reduction 
on standalone systems becomes challenging. For example, 
in 2021, for the delivery of dry groceries, using our previ
ously deployed multiple-stop loading system, our trucks 
were nearly fully utilized in terms of weight and space 
capacities, providing little opportunity for further utiliza
tion increases. A breakthrough in optimization technolo
gies was required to drive continuous improvement.

A Multiple-Tier Decision Framework with 
Advanced Optimization Capabilities
To tackle the challenges we describe, we identified oppor
tunities in an end-to-end optimization framework that 
ranges from network strategy to execution optimization 
technologies. We see a continuous improvement cycle 
between network strategy and execution optimization. A 
supply chain network designed and planned for higher 
efficiency could unlock the greater potential of the optimi
zation applications, while faster optimization applica
tions can enable more simulation runs, which allow the 
evaluation of more scenarios, and thus improve the prob
ability that executive decision makers will adopt the 
recommendations.

Walmart follows a four-step hierarchical decision pro
cess for designing, planning, and executing its supply 
chain (Figure 1). It starts with strategic network design 
decisions such as investing in building a new DC or ret
rofitting an existing DC by looking ahead a few years. 
Next, it determines facility alignment (e.g., which stores 
should be served by which DC) and capacity planning 
at each facility on a yearly or quarterly basis. It then 
makes execution decisions, such as how to efficiently 
pick, load, and route items, prior to moving products. 
Finally, as items are physically moved through the sup
ply chain, it makes dynamic decisions to help its associ
ates adjust to the plan in real time.

Achieving continuous improvement in this multiple- 
tier decision process is difficult for two primary reasons: 

(1) considering the most granular level of operating 
costs at the strategic planning level makes the problem 
intractable and (2) optimization applications need to run 
much faster than they do currently if they are to evaluate 
more scenarios. Therefore, we decided to build our next 
generation of optimization capabilities with advanced 
decision engines plugged into each critical decision step 
and with a tightly coupled information feedback flow 
(Figure 1). At the strategic and tactical levels, a set of 
scalable optimization models outlines the future-state 
network and a transformation roadmap with detailed 
year-by-year planning to move from the current state to a 
future state. The outputs of these models also enable 
resource alignment and planning across the supply chain. 
At the execution level, the state-of-the-art optimization 
engines enable optimized operations in a dynamic fash
ion. More importantly, optimization engines enable a 
simulation capability to evaluate the impact of various 
scenarios, while making strategic and tactical decisions. 
Building these optimization capabilities was not trivial; 
we faced numerous business and technology challenges.

Next, we will discuss in further detail our next- 
generation optimization capabilities across the supply 
chain using grocery DC (GDC)-to-store outbound opera
tions as an example. A GDC specializes in storing and 
distributing dry food and perishable commodities (e.g., 
fresh produce and meats). With the recent hypergrowth 
in online channels, the grocery segment of merchandis
ing became the strategic growth engine for Walmart. 
Given shorter life cycles and cold chain compliance nec
essary for grocery commodities, especially perishable 
items, faster turnover and special handling are required 
in all stages of inventory movement, including storage, 
transportation, and stocking. Compared with general 
merchandising, the complexities of moving grocery pro
ducts, which range from network design to daily routing 
and loading execution, are significantly greater, creating 
more opportunities for improving both cost efficiency 
and the experiences of customers and associates. With 
minor modifications the models we discuss in this paper 
are applicable to general merchandising products.

Network Design and Transformation 
Planning Solution
Introduction
Designing and transforming supply chain networks are 
the first two steps in Walmart’s integrated decision pro
cess. The transformation process of each GDC usually 
takes several years from the design stage to the comple
tion of all construction. It is therefore crucial to make 
long-term strategic decisions such as retrofitting exist
ing GDCs with next-generation fulfillment capabilities 
or building greenfield sites. We define two sequential 
decision steps: (1) define the future grocery network 
and (2) generate a transformation roadmap.

Mehrotra et al.: Optimizing Walmart Supply Chain 
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The objective of designing the future grocery net
work is to minimize the total capital and operational 
costs of the network. The costs considered include (1) 
fixed costs of running each GDC; (2) volume-based var
iable cost, which is dependent on the type (e.g., automa
tion level) of each GDC; and (3) transportation costs 
between GDCs and stores. The problem is constrained 
by practical and business considerations. The output of 
the process includes (1) the locations of the GDCs in the 
future grocery network, (2) the type and size of the 
GDC at each location, and (3) the stores that are aligned 
to each GDC.

The process of retrofitting an existing manual GDC or 
building a new GDC involves land purchase (if applica
ble), site permitting, building construction, installation of 
automation equipment, and equipment commissioning. 
Given the defined future network, the transformation 
plan we develop must be feasible (i.e., customer service 
cannot be interrupted during the transformation) and 
the cost must be minimal.

Challenges and Complexities
Walmart’s GDC network supports around 600 Sam’s 
Clubs and more than 4,700 stores. The supply chain pro
vides unparalleled access to everyday essentials for our 
customers. Given the structure and size of the network, 
there are two main contributors to the complexity of the 
problem: (1) the interdependent constraints based on var
ious business considerations and assumptions and (2) the 

computational difficulty caused by the extremely large 
scale of the problem size.

Business Process Complexity. Each type of GDC con
version (e.g., retrofit) must be laid out with transformation 
assumptions about moving from the current state to the 
future state. This breakdown provides a view of how costs, 
capacity, and capital outlay will occur over time. For new 
greenfield and freezer assets, the breakdown includes time 
for real estate and construction activities, material handling 
equipment (MHE) installation, and building ramp plans. 
For retrofits, these assumptions include how some legacy 
capacity will need to be removed to provide sufficient 
space to allow the retrofit work to begin. Assumptions dif
fer based on the size of the GDC.

Computational Complexity. We can theoretically build 
a greenfield GDC at any location within the continental 
United States. Even if we discretize the map by zip 
code, there are over 30,000 locations from which to 
choose. Each location would also have approximately 
31–78 type/size options. Moreover, each GDC could be 
aligned with any of the 600 Sam’s Clubs and 4,700 Wal
mart stores. Given that this is a mixed-integer program
ming (MIP) problem, solving it in a reasonable time 
using commercial optimization solvers is impossible.

A multiple-year transformation plan results in a 
multiple-period problem. That is, for each GDC, the 
transformation status in the current period is dependent 

Figure 1. (Color online) Walmart’s Integrated Decision Processes Empowered by Advanced Optimization Capabilities 

Note. Load Planner is a system that plans and optimizes Walmart’s truck routes and loads.

Mehrotra et al.: Optimizing Walmart Supply Chain 
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on its previous status. Meanwhile, the GDC-to-store 
alignment in each period is dependent on the availabil
ity of the GDCs. Furthermore, because considering the 
GDC-to-store alignment in each period is required for 
feasibility and optimality, the problem scale increases 
further.

Solution Approach
We develop tailored models and algorithms to effec
tively address challenges and solve the problems. We 
first construct a MIP model, which considers demand, 
node capabilities, automation options, operating costs, 
capital, and outbound transportation costs to recom
mend an optimal future-state network. We develop an 
iterative metaheuristic (Figure 2) to solve the MIP prob
lem in a reasonable amount of time.

In Step 1, we first cluster demand (items in cases 
ordered by stores) based on its type (e.g., freezer items, 
fresh items) to reduce the size of the input variables. We 
generate a subset of zip codes randomly together with 
the existing GDC locations as the candidate locations of 
the new greenfield GDCs in Step 2. In Step 3, we solve a 
network optimization model using the data generated 
from the previous two steps. If the result does not meet 
the stopping criteria or if it is the first iteration, we move 
to Step 4 to determine an updated candidate location set 
for the greenfield GDCs and then loop back to Step 3. 
Otherwise, we move to Step 5, in which we use the 
resulting GDCs as a fixed network and calculate the opti
mal store assignment to GDC. The stopping criteria can 
be a comparison between the resulting GDCs of the last 
two consecutive iterations. For example, if the two 
resulting networks (GDC locations and types/sizes) are 
sufficiently similar, where distances of GDC locations 
and sizes are within a tolerance factor defined based on 
business understanding, the stopping criterion is met.

Once the optimal future-state network has been 
defined, we need to generate the optimal network trans
formation roadmap. We categorize the model con
straints of this problem into two groups: (1) a scheduling 
problem, which describes the dependent transformation 

stages (e.g., building construction, installation of automa
tion equipment, and equipment commissioning) of each 
GDC among different periods, and (2) assignment pro
blems of each period, which model the detailed GDC- 
to-store alignment. These two groups of constraints are 
interconnected by shared decision variables on the trans
formation process of each GDC and the objective function 
on the total cost and capital investment. Appendix A
shows the detailed formulation for the scheduling prob
lem. The formulation for the assignment problem is simi
lar to the model in network design; however, it adds a 
time dimension to all the variables and parameters. The 
result of this model is a detailed transformation schedule 
(e.g., when to start the transformation and how each GDC 
evolves over time) for each GDC involved and the corre
sponding optimal store alignment during each period. 
Because the scale of the problem is largely dependent on 
the number of periods considered, we hierarchically solve 
it with larger increments of periods at the beginning and 
break down each period into smaller increments later.

Note that we perform multiple-scenario runs with 
deterministic models for a more comprehensive pre
sentation of the results under different assumptions, to 
account for stochastics of assumed parameters. We 
highlight two key innovations in network design and 
transformation planning in our solution. The first inno
vation is our algorithm for evaluating candidate loca
tions for the future grocery network. The concept of 
doing neighborhood generation of the candidate GDC 
locations was motivated by the local search method 
and improving the resulting location in each iteration. 
In our proposed algorithm, only a smaller problem 
with a subset of all candidate locations is needed for 
consideration each time. Given that this MIP problem is 
NP-hard and exponentially increases in scale as more 
candidate locations are considered, this reduction in 
the problem scale significantly improves the solution 
efficiency. The second innovation is our network trans
formation modeling and algorithm. We developed a 
novel approach for the transformation optimization 
model. Walmart had done no previous work on this, 

Figure 2. (Color online) Steps for Defining the Future Grocery Network Within the Solution Algorithm 

Note. A perishable DC (PDC) is a temperature-controlled segment of a GDC, which is powered by freezers.
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nor did it exist in any commercial software suite that 
we explored.

Load Planner: Routing and 
Loading Solution
Introduction
Following the four-step decision process illustrated in 
Figure 1, once facility alignment and capacity at each 
facility are determined, execution planning determines 
how to pick, load, and deliver the products before they 
are physically moved. Walmart has always been at the 
forefront of leveraging optimization technologies to 
make the best operational decisions. Over the past 
decades, its operational efficiency has improved contin
uously, as evidenced by the near-full utilization of 
trucks for grocery deliveries of dry goods while meet
ing store demand. Given the rapid volume growth and 
evolution of Walmart’s supply chain, we decided to 
build the next-generation outbound routing and load
ing optimization system, Load Planner, with a goal of 
simplifying, automating, and optimizing supply chain 
outbound execution processes.

Load Planner runs each day to create routing plans in 
which each route specifies a sequence of stops, includ
ing detailed time information about all the activities 
involved in the trip; examples include driving, breaks, 
and waiting and layover times. To ensure the feasibility 
of a route, each route generated at this stage is guaran
teed to have a feasible truck-load design that complies 
with all truck-loading constraints. The transportation 
command center associates review and make any nec
essary changes with some exceptions (e.g., certain 
roads are not operable on that day) with the help of 
functionality provided by Load Planner. Next, Load 

Planner generates the best arrangement of pallets, con
figuration of compartments, and temperature settings 
in trucks. DC associates review the load plans and 
make additional revisions, if necessary. Finally, DC 
associates start to pick and load products by following 
the plans. Typically, associates only need to follow the 
load plan and load pallets in sequence. However, in 
unforeseen situations, such as when pallets planned to 
be loaded at the front of the trailer are not ready or are 
canceled, or an associate loads a pallet into an undesig
nated floor spot, Load Planner can help associates 
dynamically adjust the load plan to ensure all loading 
compliances are met.

Figure 3 outlines detailed decision steps for current 
grocery outbound executions, with Load Planner’s 
backbone decision modules to support each decision 
step. Please note that the planning of picking trips 
(sequence of picking cases to build pallets in DCs) is 
based on simple rules; therefore, Load Planner does not 
address it.

At the core of Load Planner, eight major optimization 
modules collectively empower each execution decision. 

1. Routing generates optimal multiple-stop routes 
that deliver pallets to stores within a store’s receiving 
time window.

2. Hour-of-Service (HOS) checks quickly (i.e., within 
milliseconds) if a route sequence complies with deliv
ery time windows and U.S. Department of Transporta
tion (DOT) HOS regulations. If compliant, the module 
determines when a driver should take a break and lay
over on the route and estimates the total transit time.

3. Feasible Loading checks quickly (i.e., within millise
conds) if the given pallets and their delivery sequence 
can yield a feasible load plan that complies with all 
loading constraints.

Figure 3. (Color online) Decision Process Flow Including Eight Optimization Modules That Support Each Step and Optimiza
tion Problems That Are Solved During Each Step 
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4. Stacking generates plans to stack one pallet on top 
of others to save floor space (stacking). We refer to 
such stacked pallets as a stack.

5. Dynamic Routing replans the stop sequence for 
one route given a changed set of pallets or validates a 
predefined stop sequence.

6. Optimal Loading generates an optimal load plan, 
including the orientation and position for each pallet, 
compartment configurations, and temperature settings, 
to ensure all loading regulations are met.

7. Dynamic Loading provides an optimal plan for 
loading a set of pallets onto a truck that has been par
tially loaded.

8. Fluid Loading identifies a group of stacks where 
the positions of the stacks are interchangeable within 
the block.

Challenges and Complexities
With recent advancements in computing technologies 
and handheld devices, we believed we could build a 
faster and better system (Load Planner) to support both 
execution planning and dynamic executions. Yet, we 
were facing three major challenges from both business 
and algorithm perspectives.

Handling Grocery Products. Grocery products, espe
cially perishable commodities, require strict adherence 
to cold chain compliance throughout the entire storage, 
handling, and transportation processes. They require 
the use of temperature-controlled trailers to maintain 
the proper temperature range. In the United States, a 
typical 53-foot temperature-controlled trailer (e.g., a tri
temp trailer) features two bulkheads that can divide the 
interior into up to three compartments, each of which 
can be set to a different temperature. Figure 4 shows a 
top view of pallet arrangements in a reefer trailer, 
which is commonly used for transporting perishable 
commodities.

A typical load plan includes the placement of pallets, 
bulkhead positions, temperature settings for each com
partment, and (if needed) the empty pallet (i.e., a stack 
of pallets) at the rear of the trailer for stability purposes. 
The task of optimally arranging pallets within a trailer 

is a complex bin packing problem, and multiple 
variable-size compartments with different temperature 
settings make it more difficult to solve. In addition, a 
set of cold chain requirements makes the problem more 
challenging. For example, we prohibit the delivery of 
freezer pallets on the tail of a trailer and require that the 
temperature difference between adjacent compart
ments be kept within a specific range. The combination 
of additional constraints and decision points makes this 
variable-size, multiple-compartment loading problem 
more difficult.

Establishing Intelligence and Transparency. One of 
the major motivations in building a new generation of 
routing and loading systems is to improve the associ
ates’ experience; thus, the users must have a high 
degree of trust in the new system. We believe there are 
two ways to establish this trust: (1) provide operation
ally friendly plans, and (2) make the decision process 
transparent and interactive.

To provide a more operationally friendly plan, we 
must tackle many challenging problems, such as mini
mizing reloads. A reload occurs when store associates 
must first unload pallets to be delivered to other stores 
prior to unloading their own store’s pallets and must 
later load the other stores’ pallets back onto the truck. 
Figure 5 illustrates an example of the reload of pallets, 
where pallets delivered to a store must be unloaded to 
unblock the other two pallets in another compartment. 
For perishable products, even when we force a first-in- 
last-out (FILO) sequence for the pallets in each compart
ment, we cannot eliminate the necessity for reloads using 
existing technologies. However, by using advanced algo
rithms, we can dramatically reduce the incidence of 
reloads. Doing so increases the complexity of the loading 
problem and transforms it into a multiple-objective 
problem.

Making the decision-making process transparent is 
also a challenging task that requires many supporting 
functions. For example, in our routing optimization, we 
allow users to edit solutions by adding, removing, or 
reoptimizing routes. To support this, we needed to 
develop fast-running algorithms in the background to 

Figure 4. (Color online) Stack Arrangements for a Temperature-Controlled Trailer 

Notes. The bulkheads are constrained to move only within a predefined range, as we illustrate with arrows to accommodate the position of air 
conditioning fans. Each square represents a stack; each pattern indicates a different destination.
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validate the feasibility of a route or incrementally 
improve existing routes. Developing each of these algo
rithms was a nontrivial task.

Building Fast, Flexible, and Scalable Algorithms. The 
vehicle routing problem (VRP) was initially introduced 
in Dantzig and Ramser (1959) and later in Clarke and 
Wright (1964) to optimize route plans from a central 
depot to geographically scattered customers using a 
fleet of trucks with varying capacities. VRP and its vari
ant problems have grown ever more popular in the 
past decades. We refer the reader to Laporte (2009) for 
solution methods and to Eksioglu et al. (2009) and 
Braekers et al. (2016) for problem categories and classifi
cations. Two major loading problems, which the opti
mization community studies in conjunction with VRP, 
are the two-dimensional bin packing problem (2BPP) 
and the three-dimensional bin packing problem (3BPP). 
Martello and Vigo (1998) propose the exact solution 
and lower bounds for 2BPP, and Martello et al. (2000) 
propose the same for 3BPP. The integration of routing 
and loading problems is a challenging but promising 
research area because of its wide applications in real- 
world transportation. Iori and Martello (2010) and Pol
laris et al. (2015) review recent works related to VRPs 
with loading constraints.

Despite the extensive research and study of both the 
vehicle routing and bin packing problems in academia 
and industry, we discovered that the conventional 
methodologies are inadequate for our specific problem 
settings. Our solutions must consider over 50 unique 
rules, which we summarize in Table 1. In addition to 
the traditional constraints of delivery time window and 
load capacity in terms of dimension, volume, and 
weight, these rules include additional considerations of 
transportation safety, operational efficiency, and user 
experience. Some constraints are specific to a DC, store, 

or equipment, further complicating the problem. For 
example, the routing and loading requirements for off
shore stores (e.g., in Alaska, Hawaii, and Puerto Rico) 
differ from those of stores within the contiguous United 
States. Offshore routing requires the ability to ship dry 
and perishable pallets together in the same trailer with 
certain limitations. Our operations are continuously 
evolving, and new requirements are constantly arising; 
therefore, it is crucial to have a solution framework that 
is adaptable to accommodate these ever-changing 
requirements.

Moreover, the vast scale of the outbound grocery net
work requires the design of scalable algorithms and 
solution architectures. Our solution empowers decision 
making for a network that delivers more than hundreds 
of thousands of pallets of items from 47 grocery DCs to 
over 600 Sam’s Clubs and 4,700 Walmart stores, com
prising multiple functionalities with varying computa
tional time requirements. For example, Load Planner 
commits a maximum of 15 minutes to plan delivery 
routes for a DC, and one second to plan an efficient 
truck load or dynamically adjust a truck load. The last, 
but not the least, challenging aspect is that as the rout
ing algorithm searches for the best routes, it constantly 
checks if the given route is feasible. This requires the 
HOS module and feasible loading module to provide a 
response within milliseconds.

Solution Approach
Because of the complexity of the integration of routing 
and loading problems, most problems are solved by 
heuristic methods. Based on the findings in Côté et al. 
(2017), although the integrated problem is solved heu
ristically, the solution is significantly better, both theo
retically and empirically, than separate solutions. We 
developed a metaheuristic-based framework, which 
integrates a suite of algorithms including various 
neighborhood searches, heuristics, and MIP models. 
For each module, we selected the best algorithm and 
parameter settings based on learnings from extensive 
experimentation using historical data. The framework 
provides us with the flexibility of adding incremental 
features, as well as high computational efficiency, 
which has been a general challenge when solving 
NP-hard problems. In the following sections, we pro
vide a more in-depth explanation of our solutions for 
each module.

Optimizing Routes While Considering Loads. In this 
section, we outline our solution approach for routing 
modules (Fu et al. 2020, Huang et al. 2020a, Liu et al. 
2020). It is important to note that the loading problem is 
seamlessly integrated into this solution framework in 
two ways: first, load construction and sampling are per
formed in each local search iteration of the route 
improvement algorithm to determine if a given route 

Figure 5. (Color online) Load Map Demonstrating Reloading 
of Stacks at Store Stops 

Notes. In this example, when the trailer arrives at stop 1, we must 
unload one stack to be delivered to stop 2 to clear the access to the 
middle compartment to continue to unload two stacks for stop 1. 
After the completion of the unloading, this stack needs to be reloaded 
back into the truck. Similarly, when arriving at stop 2, two stacks to 
be delivered to stop 3 in the middle compartment need to be 
unloaded and reloaded back into the truck.
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can yield a feasible load plan; second, utilizing load 
information helps in the design of customized algo
rithms and in achieving better solutions.

Our approach to the routing problem involves two 
steps: initial route construction and route improvement. 
Initial route construction can be modeled either natu
rally as a VRP or as an assignment problem by assigning 
pallets or groups of pallets to a set of route templates. 
The routes are then improved with a customized tabu 
search framework that includes neighborhood searches 

such as one-zero exchange, one-one exchange, two-opt, 
and large neighborhood search. One-zero exchange 
helps reduce the number of routes, whereas the latter 
three focus on minimizing travel distance. We tai
lored our implementation of tabu search by using 
techniques (e.g., approximate tabu list matching, 
dynamic tabu tenure, intelligent restart) to improve 
its performance. The routing module is enabled by 
three other modules—Feasible Loading, Stacking, 
and HOS.

Table 1. Outbound and Loading Rules We Follow

Constraints Pallet stacking Loading Routing

Classic constraints • Stack cannot exceed the 
trailer height. 

• Stacks’ total weight and cubic 
volume cannot exceed the 
trailer weight limit. 
• Stacks (i.e., width, length, 

height) must fit into the 
trailer. 

• The arrival time at each 
delivery store must be within 
that store’s delivery time 
window. 
• Start time and end time of a 

route must be within a time 
range. 

Safety constraints • Pallets carrying certain high- 
risk types of products (e.g., 
chemicals) cannot be stacked. 

• Weight distributed to front 
and rear axles must be 
within a prespecified range 
throughout the delivery trip. 
• The difference between 

curbside and roadside weight 
must be within a threshold 
limit. 
• The rear axle of certain trailer 

types can be adjusted within 
a range limit. 
• Perishable items must be 

held in the refrigerated 
compartment within certain 
temperature settings. 
• The gaps between two 

columns of pallets must be 
limited to a given threshold. 
• Empty pallets and airbags 

must be used when 
applicable for stability. 

• Routes should comply with 
DOT HOS regulations: 
1. 11-hour driving limit 
2. 14-hour limit 
3. 30-minute driving break 

• If delivery is handled by day 
cab driver, driver must 
return to the distribution 
center on the same day. 

Distribution center 
operations 
constraints

• If there are empty spots in 
the trailer, pallets should not 
be stacked. 

• Loading pattern should be 
loader friendly with limited 
stacking operations. 

• Two pallets that are picked 
in the same picking trip must 
be delivered in the same 
truck to their destination 
stores. 

Store operations 
constraints

• Pallets to be delivered to 
different stores cannot be 
stacked. 
• Pallets carrying items with 

different temperature ranges 
(e.g., ice cream and bananas) 
cannot be stacked. 

• Reloads are not allowed for 
delivery of dry grocery items. 
• Reloads for delivery of 

perishable items must be 
minimized. 
• Many specific loading rules 

apply to offshore loading 
(e.g., frozen compartment 
must be at the front of the 
truck). 

• Route must honor the 
delivery position specified by 
the store if it exists. 
• Store can make a request to 

not split delivery orders into 
multiple trucks. 
• A drop-and-hook store must 

be the last stop and the 
trailer must be dropped at 
this store. 
• Delivery routes must 

consider backhaul loads’ 
origination location and time 
windows. 

Note. Drop-and-hook is the trucking industry’s term for when a driver drops a full container at a facility and hooks the tractor to a preloaded 
trailer at the same facility.
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For the Feasible Loading module, our algorithm con
sists of four crucial steps: (1) constructing stacks, (2) 
assigning stacks to compartments, (3) determining floor 
spot positions to meet dimensional requirements, and 
(4) assigning stacks to floor spots using heuristically 
generated templates. If a feasible assignment exists at 
the completion of these four steps, we obtain a set of 
feasible load plans. Meanwhile, the Feasible Loading 
module returns the loading feasibility status for each 
local search step in the routing algorithm. In the follow
ing paragraphs, we provide more details on these steps.

The first step of the Feasible Loading algorithm is 
accomplished through the Pallet Stacking Module as 
introduced in Figure 3. The greedy method is used to 
generate initial stacks. As mentioned in the earlier sec
tion, we benchmark various metaheuristics methods, 
such as simulated annealing and tabu search, and select 
the best method for each module. The simulated 
annealing algorithm is adopted in this module to itera
tively improve the stacking solution with the objective 
of minimizing the number of stacks. The remaining 
steps start with generating a set of feasible stack-to- 
compartment assignments, each of which implicitly 
determines the position of bulkheads, compartment 
temperature, and the number of reloading operations. 
We take a three-step approach: (1) assigning tempera
tures to each compartment; (2) grouping stacks by store 
and temperature and assigning them to compartments 
with compatible temperatures (note: at this point, con
straints such as bulkhead position and trailer dimen
sion may be violated); and (3) using a stack-shifting 
algorithm to adjust the assignments and make them 
feasible from a loading dimension perspective (loading 
dimension feasibility is formulated in Appendix B). The 
assignment with a lower number of reloading opera
tions will be given a higher priority for the remaining 
load-plan steps.

For each feasible stack-to-compartment assignment, 
we identify floor spot positions in each compartment 
with a loading pattern matching algorithm. These floor 
spots serve as virtual placeholders for stacks with fixed 
positions and orientations. The algorithm utilizes a set 
of carefully designed loading patterns (see Figure 6) to 
reduce the number of possible floor spot configura
tions. This improves the efficiency of the algorithm and 
enhances its usability by DC associates.

Once floor spots are determined, stacks are assigned 
to them to ensure compliance with constraints on the 
load axle weight limit. Assignments are based on tem
plates generated by a heuristic method and are then fil
tered to produce feasible load solutions following a 
validation against the axle weight limit constraint using 
a mathematical formula. Appendix B shows the formu
lation of loading constraints.

In the HOS module (Huang et al. 2020a, 2021), our 
algorithm starts by defining a set of hierarchical driver 

states and abstracting HOS regulations, enabling adapt
ability to ever-evolving rules. It then determines initial 
time stamps for events such as driving, service, breaks, 
wait time, and layover time, and follows with an itera
tive step that adjusts both time and events to drive 
toward feasibility. Finally, it applies a wait-time reduc
tion algorithm to reduce the total duration while ensur
ing compliance with all rules.

Planning an Efficient Load with and Without Loaded 
Pallets. In this subsection, we describe the methodolo
gies we followed in three loading modules: Optimal 
Loading (Huang et al. 2020b), Dynamic Loading (Liu 
et al. 2021), and Fluid Loading (Sun et al. 2021).

The optimal loading solution builds on the same pro
cess as the feasible loading construction algorithm; 
however, it includes an additional step to improve the 
loading using a simulated annealing framework. It is 
designed to improve weight balance through local 
search steps such as swapping stacks. At each iteration, 
stacks are selected based on a heuristic method, which 
ensures that all loading constraints, except the axle 
weight limit, are satisfied after the swap.

The Dynamic Loading module creates an incremen
tal load plan to optimize the load weight balance by 
determining the placement of remaining stacks, while 

Figure 6. (Color online) Four Mainstream Loading Patterns 

Notes. In the lengthwise pattern, all stacks are loaded into a trailer 
from their longer side (i.e., 48 inches). In the widthwise pattern, all 
stacks are loaded into the trailer from their shorter side (i.e., 40 
inches). In the pinwheeling pattern, four stacks create a block by alter
nating the orientation of stacks in each row and column. That is, the 
first stack in a row has a different orientation than the next stack in 
the same row. Additionally, the orientation of stacks differs from that 
of the next stack in the same column. A hybrid pattern is a special 
loading pattern in which all stacks in a column have the same orienta
tion but differ from the other columns. That is, if all the stacks in col
umn 1 are lengthwise, the orientation of all stacks in column 2 is 
widthwise.
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keeping the already loaded portion intact and adhering 
to all loading constraints. It adds complexity because 
the loading process does not start with the assumption 
of an empty trailer, and stacks to be loaded must 
accommodate the existing load, which can be unpre
dictable. We designed a gap-filling algorithm, like the 
game Tetris. In this algorithm, we designed a set of 
loading units, and their utilization is intelligently deter
mined for the loading situation based on the trailer con
figuration, partial loading gap, and the number of 
stacks left to be loaded. Figure 7 shows an example 
illustrating that different loading units are used to fill 
the gap and the choice of the loading unit is based on 
the number of remaining stacks.

Traditionally, loaders must follow a loading plan 
from the front to the tail of a truck to place each stack in 
its position. This loading process is rigid and often 
causes congestion at the loading dock if stacks placed in 
the front position are not ready or picked from the 
chamber. On the contrary, the fluid loading process 
identifies loading blocks in which the position of each 
stack is interchangeable. Figure 8 illustrates an example 
of a fluid loading result denoted by blocks highlighted 
using dotted lines. An iterative heuristic approach is 
proposed with the objective of maximizing the number 
of stacks within each loading block (Sun et al. 2021). 
The initial solution includes loading blocks based on 
compartment and delivery store stop combinations. 
Next, in each iteration, a new solution with new loading 
blocks is generated based on heuristics by performing 
three major operations: splitting a block, moving stacks 
to an adjacent block, or combining two adjacent blocks. 
The feasibility of the new loading blocks is checked in 
each iteration, and finally the best loading blocks are 
identified.

In summary, our solution framework allows us to 
leverage unique characteristics of problem structures to 
achieve fast computation. We use the Feasible Loading 
module as an example. The number of permutations of 
loading stacks onto a trailer increases exponentially by 
the maximum number of stacks a trailer can carry. A 

predesigned loading pattern (refer to Figure 6 for visua
lizations) is leveraged to narrow down the number of 
potential floor spot configurations for exploration. This 
allows us to efficiently identify feasible floor spot posi
tions without exploring all possibilities. The fast com
putational time of each module improves the routing 
solution quality and also enables real-time interactions 
between a human reviewer and the system to build 
trust in the Load Planner, which plays a critical role 
throughout the development journey.

Simulation Platform: Integration of 
Strategy and Execution
As we illustrate in Figure 1, integrating these fast and 
powerful optimization models and algorithms for stra
tegic and execution decisions through what-if scenarios 
benefits our supply chain planning process from an 
end-to-end perspective.

Network design and planning models frequently 
involve the analysis of multiple initiatives, including 
store and DC alignment, trailer configurations, and 
delivery frequencies. For example, we need to evaluate 
the scenario in which the temperature-controlled trailer 
that carries the commodities requires the same tempera
ture. Alternatively, a thorough examination is essential 
to assess the feasibility of using temperature-controlled 
trailers for a wider variety of products while restricting 
deliveries to a single store per route. Additionally, it is 
crucial to evaluate the potential impact of adjusting 
the delivery frequency to a store, transitioning from a 
seven-days-a-week schedule to a five-days-a-week 
arrangement, or even contemplating a complete over
haul of the entire delivery network structure.

Therefore, we built a simulation platform with Load 
Planner’s optimizers at its core to evaluate the impact 
of what-if scenarios. The fast computational time of the 
optimizer allows us to run multiple scenarios in paral
lel, enabling decision makers to choose a lower-cost net
work plan than they used previously. Additionally, the 
simulation platform allows users to configure their 
what-if scenarios and quickly review the results.

Figure 7. (Color online) Gap-Filling Methods, Which Depend on the Number of Remaining Stacks 

Notes. In this diagram, we demonstrate the use of different loading units to optimize trailer utilization based on the number of remaining stacks. 
Example 1 showcases how the algorithm fills the gap when four stacks are to be loaded; example 2 illustrates the loading result with seven 
remaining stacks.
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Moreover, leveraging the outcomes of the simulation 
allows us to validate the assumptions that were previ
ously formulated for strategic analysis of network 
design and transformation planning. Subsequently, the 
analysis can be rerun with revised inputs, ensuring an 
up-to-date and comprehensive evaluation. Establishing 
this feedback loop enables Walmart to make holistic 
end-to-end decisions.

This faster simulation iteration enables the strategy 
and planning teams to estimate realistic end-to-end 
impacts and therefore improve the speed and accuracy 
of strategic decisions. Meanwhile, the capacity to 
design and plan a better network creates greater oppor
tunity for cost-effective executions. By integrating our 
strategic and execution decision engines into a unified, 
cohesive decision-making process, we have discovered 
remarkable synergies that surpass the cumulative 
potential of their individual components.

Implementation Journey
The journey to bring next-generation optimization 
capabilities into each supply chain decision step and 
shape the future of integrated decision making has 
been challenging. The road to implementation involved 
meticulous planning, experimentation with algorithms, 
collaboration among various groups, and unwavering 
dedication to align all components with our vision.

At a strategic level, historically, decisions such as net
work design and planning were supported by isolated 
optimization models, leading to separate designs for 
e-commerce and store networks. In 2020, the first 
modeling efforts were made to consolidate these net
works under a unified strategy to enable end-to-end 
omnichannel fulfillment. A year later, the optimization 
models were developed and used to support dry and 
perishable grocery network design. As of fiscal year 
2023 (FY23) (February 2022 to January 2023), Walmart 
fully adopted analytical and optimization models for 
omnichannel network design and planning.

At the execution level, it took approximately four 
years to turn a proof-of-concept, which combines a 
solver for a VRP with time windows and a container- 
loading solver, into a fully functional product, Load 
Planner, which is now used by Walmart’s entire U.S. 
grocery network. We invested major efforts in building 
model capabilities to capture rich features and function
alities, enhancing solution algorithms to achieve cost 
advantages over existing solutions, and testing the 
applications in the field. Throughout this journey, we 
created a solution framework that keeps the optimiza
tion engines running fast with the flexibility to add 
incremental functionalities. We also developed innova
tive solutions to efficiently tackle both the unique pro
blems that Walmart faced and the common problems 
within the grocery industry. After extensive testing and 
a successful pilot at one of our grocery DCs in 2020, 
Load Planner was gradually rolled out across our entire 
grocery network starting in April 2021. By July 2022, all 
47 grocery DCs in the United States and the entire gro
cery outbound delivery network were equipped with 
this next-generation system providing faster, better, 
and more transparent solutions.

Moreover, we have not only advanced our optimiza
tion engines to support both strategic and operational 
decisions but also integrated them through what-if sim
ulation runs. The simulation platform was developed 
during the time when Load Planner was being rolled 
out. Network design and planning models now use it to 
evaluate various options, including store-to-DC align
ment, trailer configurations, and delivery frequencies.

Benefits
Impact on Costs, Sustainability, and Investment
As of FY23, Walmart fully adopted the proposed opti
mization solutions to make network design and trans
formation planning decisions. The direct effects of the 
network strategy will not materialize in the short term 
given our long-range planning horizon; therefore, we 

Figure 8. (Color online) Fluid Loading Result 

Note. The loading blocks are highlighted using dashed lines.
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measure its benefits primarily based on business adop
tion. In FY23, the network strategy and transformation 
roadmap recommended based on the optimization 
solutions were reviewed and approved for implemen
tation by senior management. One program received 
approval and funding for the construction of three new 
GDCs with multibillion-dollar capital investments.

In FY23, with the full network rollout of Load Planner, 
Walmart prevented 98.6 million pounds of CO2 emis
sions and saved $91.5 million by eliminating 108,000 
truck routes covering 33 million miles. We calculated 
these savings monthly considering cases, cubic feet, and 
weight of products to normalize to a consistent calcula
tion for determining miles and trailers saved. The combi
nation of fewer miles driven using fewer trailers 
multiplied by cost per mile and cost per trailer amounted 
to the annualized cost savings. We calculated CO2 emis
sion prevention using average miles per gallon (MPG), as 
reported by Walmart, evaluating fuel consumed divided 
by odometer miles driven by all tractors in the Walmart 
fleet. Total miles saved divided by MPG determines gal
lons of fuel avoided. Using the International Carbon 
Bank & Exchange conversion rate of 10,180 grams CO2 
per gallon of diesel fuel, we derived the CO2 emissions 
that Walmart has prevented.

Impact on Our Associates and Customers
Our network design and transformation planning 
solution helps Walmart make long-term investment 
decisions in our next-generation DCs either through 
retrofitting a current facility or through building a new 
facility. Newer automated buildings eliminate labor- 
intensive tasks such as lifting and carrying heavy cases 
to build pallets; they also provide better data accuracy 
and reduce handling errors, which improve store 
associates’ visibility to incoming delivery pallets. As a 
result of this improved visibility, store associates can 
better plan their stocking-to-shelf tasks, thus improving 
item availability to customers.

The Load Planner solution offers a variety of features 
that enhance the experience of Walmart associates and 
customers. For example, the fluid loading feature pro
vides DC associates with the flexibility to load a set of 
pallets in any sequence preferred. It improves loading 
experiences for associates because they do not have to 
follow a strict loading sequence. Moreover, it improves 
associate productivity in situations in which a pallet is 
not ready for loading but another pallet behind it is on 
the outbound dock and ready for loading.

Trailer loading algorithms are also helpful. Deliver
ing perishable commodities to stores using multitem
perature trailers often requires accessing multiple 
compartments. This often leads to the need to reload 
pallets for the next stops. Our trailer loading algorithms 
are designed to minimize the need for reloading, thus 

reducing the number of pallets store associates need to 
reload and improving their productivity.

In addition, the implementation of Load Planner has 
resulted in a consistent improvement in on-time store 
deliveries across the entire network. This translates to 
additional thousands of truckloads arriving at stores on 
schedule during holiday seasons. Improved on-time 
deliveries reduce the need for store associates to work 
overtime and improve item in-stock rates.

The simulation platform that connects strategy and 
execution enables rapid network changes in the event 
of a pandemic or a natural disaster. On September 24, 
2022, a hurricane struck Florida and cut off the roads to 
many of our stores. Walmart had to close 252 facilities 
including DCs and stores, resulting in the disruption of 
food and water replenishment. The network strategy 
team quickly collaborated with operations to develop a 
new alignment of DCs and stores in the impacted areas. 
The simulation platform then was used to evaluate the 
feasibility of the plan and select the best plan using 
Load Planner to reroute deliveries of essential supplies 
from other hubs to stores in the impacted area. The pro
cess took hours rather than days, and helped Walmart 
quickly reopen the closed facilities.

Transferability
Although the models and algorithms presented in this 
paper were developed for Walmart’s grocery outbound 
distribution network, they could be adopted by other 
sectors within or outside of Walmart. The network 
design and transformation planning optimization mod
els are adaptable to make strategic recommendations 
for other retailers and supply chain operators. The inte
grated routing and loading solution offered by Load 
Planner has proven to be flexible during the GDC roll
out. With a few additions to its existing functionalities, 
it can be extended to other Walmart networks, such as 
the reverse logistics network (e.g., from stores to DCs).

Dynamic multiple-stop routing of variable pallet 
sizes with multiple variable-sized temperature cham
bers is a generic problem encountered in various indus
tries. The solution algorithms we developed in Load 
Planner can be used separately to tackle different pro
blems or to support grocery first-, middle-, and last- 
mile operations.

The DOT HOS module we built into a VRP solver is 
generally applicable to any long-distance commercial 
truck routing problem. It can provide timing estimates 
for tasks such as driving, waiting, breaks, and layovers, 
or perform HOS and time window compliance checks 
of a single-stop or multiple-stop trip. These two func
tionalities make the resulting routes more trustworthy 
and executable.

For businesses that use single- or multiple-temperature 
trailers (with fixed or variable compartment sizes) to 
transport palletized commodities, our truck loading 

Mehrotra et al.: Optimizing Walmart Supply Chain 
16 INFORMS Journal on Applied Analytics, 2024, vol. 54, no. 1, pp. 5–19, © 2024 INFORMS 



algorithms can provide well-developed solutions to vari
ous use case scenarios, including batch planning, incre
mental planning with partially loaded trailers, and other 
innovative planning solutions that include flexibilities for 
loaders to change loading sequences (i.e., the fluid load
ing feature).

For retailers that do not receive full-pallet quantities 
directly from suppliers, our algorithms can provide an 
opportunity to increase trailer utilization through 
improved optimization logic (i.e., volume of freight per 
delivery) while minimizing the cost of mileage, fuel, 
driver utilization, and wear and tear on equipment. 
Although case-loaded (i.e., floor-loaded) trailers may 
yield higher utilizations, the efficiency of palletized 
deliveries reduces loading and unloading times; thus, 
drivers spend more of their time driving and less of 
their time waiting.

Conclusion
We have described and displayed the work of hundreds 
of Walmart associates since 2019 and have shown how 
the collaboration among various groups was instrumen
tal in helping these groups develop scientific approaches 
to support key decisions across multiple tiers of supply 
chain management. The groups faced many difficulties: 
• The initiatives were carried out to shape one of the 

largest retail distribution operations in the world dur
ing a time of omnichannel transformation and extreme 
challenges faced by the global supply chain.
• The network was already highly efficient, with truck 

loads for dry commodities close to fully utilized; there
fore, any incremental improvement became challenging.
• We needed to coordinate the efforts of an extremely 

diverse group of associates, including scientists, engi
neers, product managers, strategy officers, DC/store 
associates, and drivers who work on the ground. Build
ing trust among all the stakeholders was fundamental, 
because the outputs of one group were necessary to the 
next group in the line of work.

We are proud of the breakthroughs we achieved 
throughout the development and implementation of 
our solutions in three major areas. 
• We filled the gaps between theoretical studies and 

real-world applications by simultaneously solving rout
ing and loading problems using all realistic complex 
operational constraints.
• We developed an exact method to solve a variable- 

size multiple-compartment container loading problem 
with complex real-life constraints within a millisecond.
• We were able to accurately run hundreds of scenar

ios with varying inputs in reasonable time in response to 
stakeholders’ and management queries, thus resulting in 
a high adoption success rate.

Importantly, the algorithms/models we developed 
are used not only in Walmart’s grocery outbound 

operations. We are exploring the use of Load Planner’s 
routing and loading capabilities for other Walmart net
works, including the general merchandise outbound 
network and the reverse logistics network. Moreover, 
these capabilities may be externalized to other organi
zations who operate similar DC-to-store distribution 
operations. The HOS module we built into a VRP solver 
is generally applicable to any long-distance commercial 
truck routing problem.

Finally, and most importantly, the solution saved 
millions of dollars, avoided millions of pounds of CO2 
emissions, improved our associates’ experiences, and 
served our customers when and where they needed us 
most.

Appendix A. Transformation Roadmap: 
Scheduling Problem

In this appendix, we describe the mathematical formula
tion of the transformation scheduling problem, which 
describes the dependency between the GDCs at different 
periods. For illustration purposes, we provide two groups 
of formulations, which could cover all types of transfor
mations with minor input adjustments. 
• Group 1: transformations that can be completed over a 

single period.
• Group 2: transformations that require multiple periods 

for completion.

Sets and Indices
T0 :� set of all periods (including the initial), t ∈ T0 � {0, 

1, 2, : : : ,τT};
T :� set of periods considered, t ∈ T � {1, 2, : : : ,τ};
TL :� set of processes of the group 2 GDC transformation, 

tl ∈ TL � {1, 2, : : : ,τTL};
L1 :� set of group 1 GDC location identifiers (IDs);
L2 :� set of group 2 GDC location IDs;

Parameters
VendorCapt :� vendor capacity of the maximum number 
of group 2 constructions to start at time t ∈ T.

Binary Decision Variables
y1

l, t :� binary indicator of whether the group 1 site at loca
tion l at time t has completed its transformation l ∈ L, tl ∈ TL, 
t ∈ T0;

y2
l, tl, t :� binary indicator of whether the group 2 site at 

location l at time t is in the transformation process tl, 
l ∈ L, tl ∈ TL, t ∈ T0.

Constraints
1. Dependency between the periods (i.e., condition/ 

construction continuity) 
a. Group 1, ∀l ∈ L1

y1
l, t�1 ≥ y1

l, t, t ∈ T 

b. Group 2, ∀l ∈ L2

X

tl∈TL
y2

l, tl, t ≤ 1, ∀t ∈ T0 
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X

t∈T
y2

l, 1, t � 1 (remove if the transformation is in progress

at the beginning), 

y2
l, tl, t ≤ y2

l, tl+1, t+1, ∀tl ∈ TL\{τTL}, t ∈ T0\{τT}

y2
l,τTL , t ≤ y2

l,τTL , t+1, ∀t ∈ T0\{τT}

2. Vendor capacity (for group 2 only)
X

∀l∈L2

y2
l, 0, t ≤ VendorCapt, ∀t ∈ T 

3. Other constraints 
a. Given schedule of certain sites by fixing the values of 

the binary decision variables;
b. Flow balance constraints on GDC-to-store alignment.

Appendix B. Perishable Load Plan Feasibility
In this appendix, we describe the formulation of feasibility 
conditions for perishable-commodity loading. This formu
lation assumes that stacks have been assigned to each 
compartment for a route with o stops with nkt (k ∈ {1, 2, 
3}, t ∈ {1, : : : , o}) stacks from the tth stop in the kth com
partment. We define the following notation: 

mk �
Po

t�1 nkt :� number of stacks in kth compartment, 
k ∈ {1, 2, 3};

m �
P3

k�1 mk :� total number of stacks in the trailer;
wik :�weight of stack i in kth compartment, i ∈ {1, : : : , mk}, 

k ∈ {1, 2, 3};
ajk :� distance from jth floor spot’s center point to the 

innermost position of the kth compartment, calculation varies 
for loading patterns, j ∈ {1, : : : , mk}, k ∈ {1, 2, 3}; we show the 
formula for widthwise, lengthwise, and pinwheeling (defined 
in Figure 6 in the text) below:

ajk �

v
2+
�

j� 1
2

�

v Widthwise

u
2 +
�

j� 1
2

�

u Lengthwise

u
2 +
�

j� 1
2

�
u+ v

2 , j%2 � 1

v
2+
�

j� 1
2

�
u+ v

2 , j%2 � 0
Pinwheeling

8
>>><

>>>:

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

w(k) �
Pmk

i�1 wik :� total weight of stacks in kth compart
ment, k ∈ {1, 2, 3};

bk
lb, bk

ub :� lower/upper bounds of bulkheads, k ∈ {1, 2};
ℓkS :� length of stacks in kth compartment, k ∈ {1, 2, 3};
g �

P3
k�1 w(k) :� total weight of stacks on a given route;

δ1, δ2 :� locations of front and rear axles;
g1, g2 : maximum weight limits of front and rear axles;
Ck(·): set of feasible floor spots for a given stack;
xijk ∈ {0, 1}: binary variable denoting whether jth stack is 

assigned to ith floor spot in kth compartment;
The perishable loading feasibility can be expressed in the con

straints we show below. The first constraint is for validation of 
axle weight limit; the second and third constraints are assign
ment constraints to enforce one-to-one matching between stacks 
and floor spots. The final three are constraints on dimensions 

and bulkhead positions.

δ2�
g1(δ2� δ1)

g
� ℓ1 ≤

X3

k�1

X

(i, j)∈S

wikajk

g
xijk ≤ δ1+

g2(δ2�δ1)

g
� ℓ1 

X

i∈Ck(j)
xijk � 1, k∈ {1,2,3}, j ∈ {1, : : : ,mk}

X

j∈Ck(i)
xijk � 1, k∈ {1,2,3}; i ∈ {1, : : : ,mk}

ℓ1 � w2 max{b1
lb, ℓ1s }+w3 max{b1

lb+ ℓ
2
s , ℓ1s + ℓ

2
s , b2

lb}
� �

=g 

ℓ1S ≤ b1
ub; ℓ3S ≤ ℓT�b2

lb; ℓ2S ≤min{b2
ub, ℓT� ℓ3S}�max{ℓ1S, b1

ub}

wT ≥ 2u, u+v, 2v 
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