# IE 479 Distribution Logistics

### **Personal Information**

- Instructor: Bahar Yetiş Kara
  - Office: EA-314
  - Tel: 3156
  - Email: <u>bkara@bilkent.edu.tr</u>
- Assistant: Egehan Uğraş
  - Office: EA-307
  - Email: egehan.ugras@bilkent.edu.tr
- Office hour: by appointment

### **Lecture Hours**

Mondays 9:30-10:20

Wednesdays 13:30-15:20

### **Text Book**

- Introduction to Logistics Systems Planning and Control,
   G. Ghiani, G. Laporte, R. Musmanno,
   Wiley, 2003, ISBN: 0-470-84917-7
- Lecture notes very crucial

# Course Grading Policy-Tentative

- Midterm 25%
- Final 30%
- Article Presentation 10%
- Projects
  25% (10 + 10 + 5)
- Class-participation 10 %
- No FZ policy

### Teams of 2-3

- Article Presentation
  - Interfaces articles
- Project 1 & 2 (20%, 10% each)
  - Realistic problems
  - Will sort the reports based on the objective function values
  - Report format is also very important (Latex is highly suggested)
- Project 3 (5%)
  - A Class project!

# 2025 Fall Calendar

|         | September 15 | Lecture-1 |
|---------|--------------|-----------|
| WEEK1   | September 15 | Lecture-2 |
| AAFEK 1 | September 17 | NO CLASS  |
|         | _            |           |
|         | September 22 | Lecture-1 |
| WEEK 2  |              | Lecture-2 |
|         | September 24 | Lecture-3 |
|         |              | Lecture-4 |
|         |              |           |
|         | September 29 | Lecture-1 |
| WEEK3   |              | Lecture-2 |
|         | October 1    | Lecture-3 |
|         |              | Lecture-4 |
|         |              |           |
|         | October 6    | Lecture-1 |
| WEEK4   | October 6    | Lecture-2 |
| WEEK4 [ | October 8    | Lecture-3 |
|         |              | Lecture-4 |
|         |              |           |
|         | October 13   | Lecture-1 |
| WEEK 5  |              | Lecture-2 |
| WLLKS   | October 15   | Lecture-3 |
|         |              | Lecture-4 |
|         |              |           |
|         | October 20   | Lecture-1 |
| WEEK 6  | October 22   | Lecture-2 |
|         |              | Lecture-3 |
|         |              |           |
| WEEK 7  | October 27   | NO CLASS  |
| WLLK/   | October 27   |           |
|         |              |           |
| WEEK8   | November 3   | MIDTERM   |
| AAEEKO  |              | Lecture-3 |
|         | November 5   | Lecture-4 |

| WEEK 9  | November 10 | Lecture-1 |
|---------|-------------|-----------|
|         | November 12 | Lecture-2 |
|         |             | Lecture-3 |
|         |             |           |
| WEEK 10 | November 17 | Lecture-1 |
|         | November 19 | Lecture-2 |
|         |             | Lecture-3 |
|         |             |           |
| WEEK 11 | November 24 | Lecture-1 |
|         | November 26 | Lecture-2 |
|         |             | Lecture-3 |
|         |             |           |
| WEEK 12 | December 1  | Lecture-1 |
|         | December 3  | Lecture-2 |
|         | December 3  | Lecture-3 |
|         |             |           |
| WEEK 13 | December 8  | Lecture-1 |
|         | December 10 | Lecture-2 |
|         |             | Lecture-3 |
|         |             |           |
| WEEK 14 | December 15 | Lecture-1 |
|         | December 17 | Lecture-2 |
|         | December 17 | Lecture-3 |
|         |             |           |
| WEEK 15 | December 22 | NO CLASS  |
|         | December 24 | NO CLASS  |

# Course Webpage

https://courses.ie.bilkent.edu.tr/ie479/



**IE 479 Distribution Logistics** 

2025-2026 Fall

# Questions on Rules of the Game

# Why Logistics?

### **CASE study: Shoes From China**

- As a manufacturer, how should I ship my shoes from Shenzen (China) to Kansas City (USA)
  - Shoes are manufactured, labeled, and packed at a plant
  - ~4.5M shoes shipped per year from this plant
  - 6000-6500 shoes shipped per container
  - Value of pair of shoes ~\$35

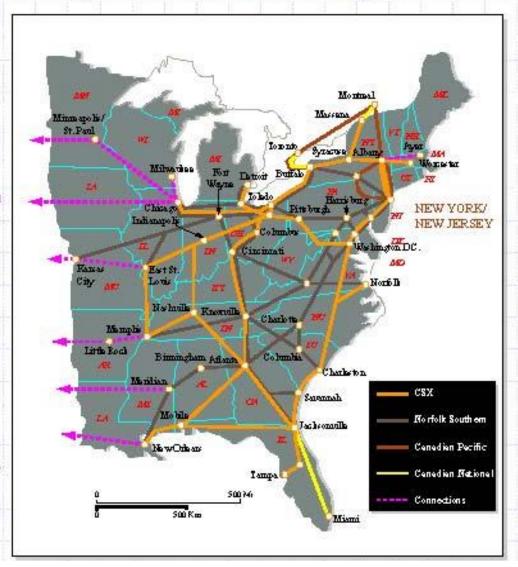
### Inland Transport @ Origin



- 3 Port Options
  - Shekou
    - Truck
  - Yantian
    - Rail
    - Truck
  - Hong Kong
    - Rail
    - Truck
- In Hong Kong
  - 9 container terminals

### Ocean Shipping Options

- 40 shipping lines visit these ports each w/ many options
- Examples:
  - APL APX-Atlantic Pacific Express Service
    - Origins: Hong Kong (Sat) -> Kaohsiung, Pusan, Kobe, Tokyo
    - Stops: Miami (25 days), Savannah (27), Charleston (28), New York (30)
  - CSCL American Asia Southloop
    - Origins: Yantian (Sat) -> Hong Kong, Pusan
    - Stops: Port of Los Angeles (16.5 days)




### Inland Transportation in US



### Port of New York / New Jersey

- Maher Terminal
  - Express Rail II NS RR
    - Double stack thru:
    - Harrisburg, Pittsburgh, Cleveland, Ft. Wayne, to Kansas City
  - CSX RR (5-10 days)
    - Double stack thru:
    - Philadelphia, Baltimore, Washington, Pittsburgh, Stark, Indianapolis, to Kansas City
  - Truckload (2.5 3 days)
    - NJ Turnpike to I-78W, I-81S, I-76/70 to Kansas City



## **Transport Options**

So how do I ship shoes from Shenzhen to Kansas City?

What factors influence my decision?

# Why Logistics?



# Oracle Logistics

Know More. Do More. Spend Less.

### Logistics Management At-a-Glance



Aberdeen *Group* "Forward-thinking manufacturers use logistics strategically to reduce safety stock levels and improve customer service – and hence profits – through better information. Bottom line, logistics is a new game, and the old rules simply do not apply."

- Research Analyst, Logistics Resource Mgmt Executive White Paper

#### **Business Pressures**

#### **Customer Expectations**

- How do I improve the speed and visibility of shipments?
- How can I improve global order promise accuracy?

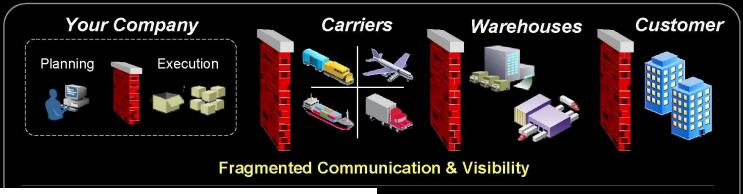


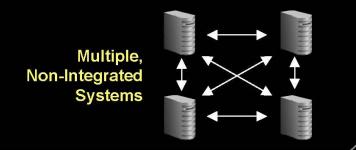
#### Variable Demand

- How do I account for higher volume from Internet selling?
- What adjustments do I make in planning for mass customization?



#### **Increased Complexity**


- How can I manage product proliferation?
- How do I balance global supply and demand to ensure on-time delivery?




#### **Margin Pressure**

- Where can I reduce costs to maintain competitive prices?
- How do I differentiate my logistics offerings?

### **Operational Challenges**





### A Need for Change Leading Business Trends

- Fulfillment Processes Integrated with Partners
- Streamlined Material Flow (e.g. Cross-Docking)
- Mobile Solutions for Increased Visibility/Passive Tracking
- Consolidation & Outsourcing of Shipping Activities
- Reverse & Service Parts Logistics Management



### **Oracle Logistics Solution**

#### Dimensional Considerations



#### Time

- Dynamic
- Tactical
- OperationalStrategic



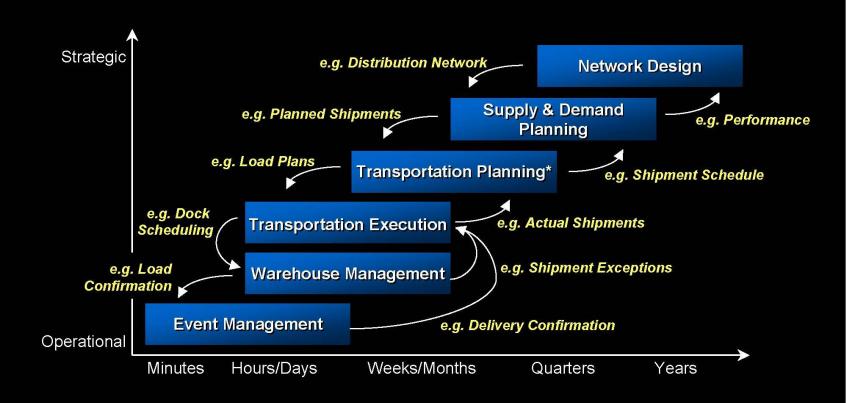
#### **Place**

- Facility
- Domestic
- Local Area International

Logistics Management



#### Mode


- Truck
- Air
- Rail
- Ocean



#### Flow

- Outbound
- Intra-Org
- Inbound
- Returns

### Integrate Planning and Execution Seamless Flow of Information



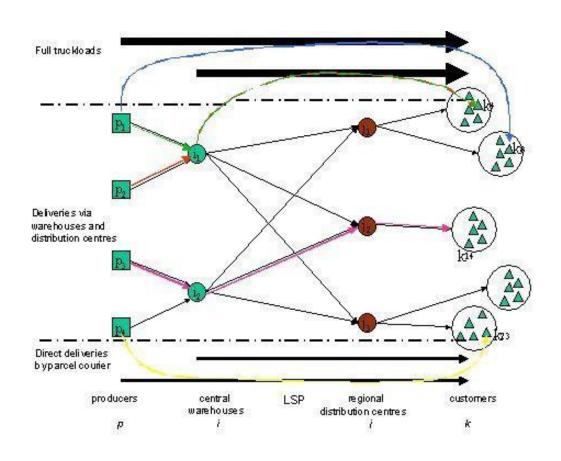
# **IE 479 Distribution Logistics**

### Aim of the Course

- Provide an understanding for logistics problems
- Using OR point of view
- Introduce models to analyze logistics problems
- Introduce quantitative models to analyze logistics problems
- Present solution techniques for selected models

## Logistics

- Deals with the planning and control of :
  - Material flows
  - Related information
- Mission is to get
  - The right materials
  - To the right place
  - At the right time while optimizing a performance measure and satisfying constraints


### **Logistics Decisions**

 This course is focused on quantitative methods used for planning, organizing, and controlling of logistics systems.

### Logistics systems

- Composed of facilities linked by transportation services
- Facilities include
  - Sites of manufacturing, storing, sorting, selling, consuming etc...
  - Warehouses, distribution centers (DCs), transportation terminals, dump sites, etc...

# Logistics Systems (Supply Chains)



### Logistic System Characteristics

- Push versus Pull Systems
  - make-to-order, make-to-stock, make-toassembly
- Vertical integration vs. third-party logistics (3PL)
  - transaction based relationships, strategic alliances

# Third Party Logistics (3PL)

- Use of an outside company
  - Perform all or part of a company's product distribution
- Three different levels:
  - Basic service providers
    - Physical distribution services (warehousing, transportation)
  - Value added service providers
    - Basic service + services such as specialized pick/pack, labeling
  - Logistics integrators
    - Full responsibility for managing key supply chain operations on a daily basis.

### Outsourcing: Pros and Cons

#### Pros:

- Improve company focus
- Access to new technology
- Free-up resources
- Reduce operation costs
- Cons:
  - Coordination costs
  - Loss of internal logistics management capability
  - Reduced contact with final customer

### Logistic System Characteristics

- Push versus Pull Systems
  - make-to-order, make-to-stock, make-toassembly
- Vertical integration vs. third-party logistics (3PL)
  - transaction based relationships, strategic alliances
- Retailer managed vs. vendor managed inventory
- Product and information flows

### Logistics systems

- Can categorize in three main activities:
  - Order processing
    - Links information flow with product flows
  - Inventory management
    - Controls inventories that are waiting to be manufactured, assembled, sold or salvaged
  - Freight transportation
    - Allows production and consumption to be far apart

# Order processing

- Links information flows with product flows
  - Customers request products (EDI, fax, telephone,...)
  - Availability of requested items is checked (PPS, SAP,...)
  - Required items are produced (if necessary) or retrieved from the warehouse
  - Items are shipped to customers
  - Customers are kept informed about order status

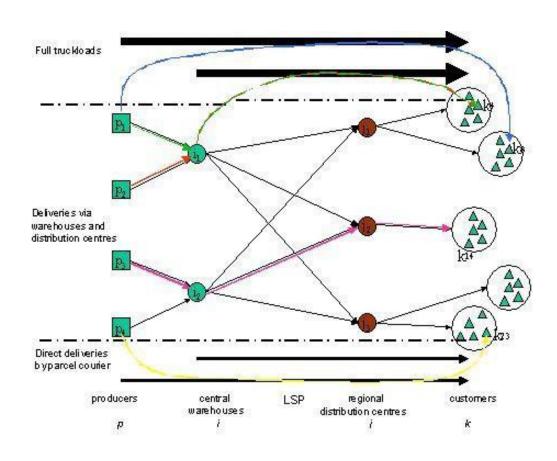
### Inventory management

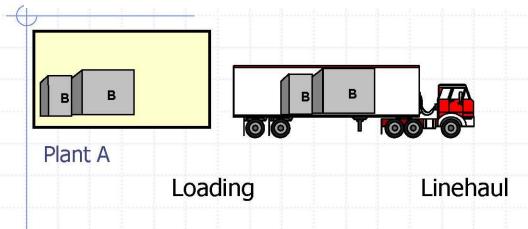
- Inventories are stocked
  - Raw materials
  - Semi-finished products and components
  - finished products (in warehouse or en-route)
- waiting to be manufactured, assembled, sold or salvaged

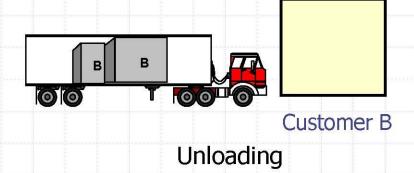
#### Inventory management

- Reasons for holding inventories
  - Demand seasonality
  - Improving customer service level
  - Price seasonality
  - Exploit economies of scale in freight transportation
  - Cope with demand and lead-time randomness
  - Cover inefficiencies in managing the logistics system

#### Inventory management


- A good inventory policy takes into account
  - the economic significance of stored products
  - transportation policies
  - production process characteristics
  - competitors' policies


- allows production and consumption to be far apart
  - global availability of certain products
  - economic benefits from production at low wage countries
  - improved availability of perishable goods


- Types:
  - Private transportation
    - (owned or leased vehicles)
  - Contract transportation
    - (dedicated carrier)
  - Common transportation
    - (general carrier)

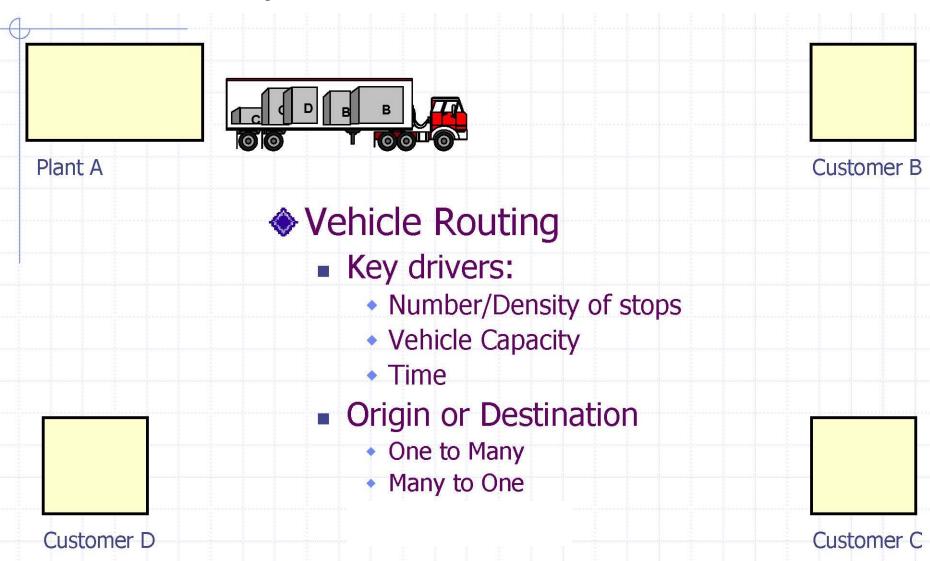
- Main features:
  - Distribution channels:
    - warehouses, DCs, direct...
  - Freight consolidation:
    - Facility consolidation : (e.g. hubs) individual shipments are consolidated at hubs .
    - multi-stop: serving some customers together
    - Temporal: adjusting schedules to ship larger quantities
  - Modes of transportation

#### Distribution channels

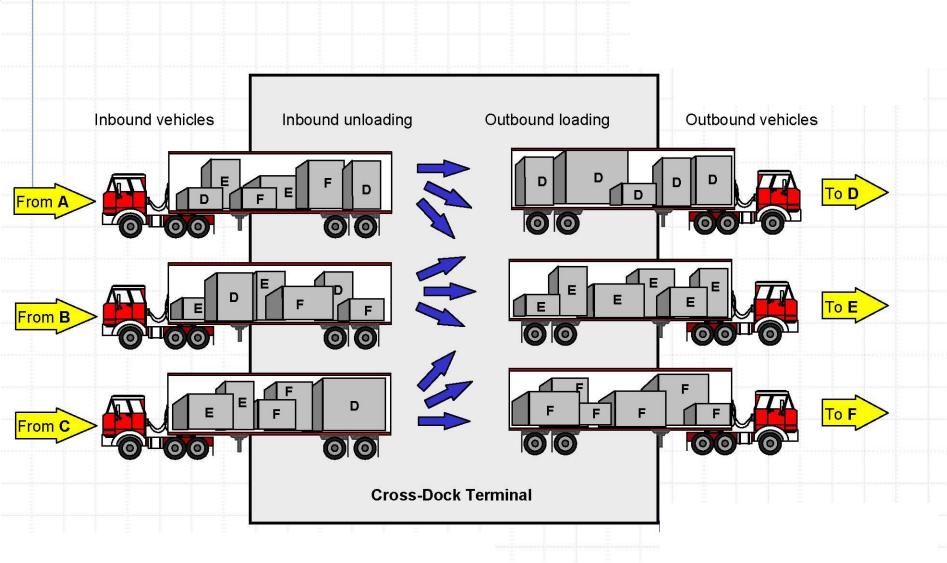







- Loading/Unloading
  - Key drivers:
    - Number of items
    - Time
    - Stowability (Packaging)
  - Not always symmetric

- Linehaul
  - Key drivers:
    - Distance
    - Balance / Backhaul


#### Freight consolidation

- Facility consolidation
  - e.g. UPS consolidates individual shipments at hubs for joint transportation between hubs
- Multi-stop consolidation
  - e.g. Fedex delivers individual shipments to their final destination on routes serving several customers
- Temporal consolidation
  - e.g. shipments schedules may be adjusted forward or backward to ship large quantities periodically

#### Multi-stop consolidation



#### Facility consolidation



#### An Aside: Routing & Scheduling

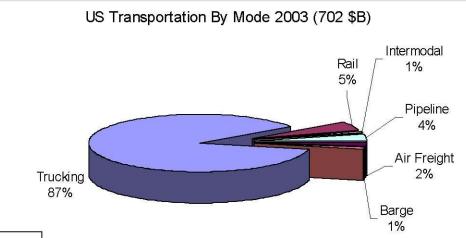
- Problem:
  - How do I route vehicle(s) from one or many origins to one or many destinations at a minimum cost?
  - A HUGE literature and area of research
- Traveling Salesman Problem / Vehicle Routing Problem
  - One origin, many destinations, sequential stops
  - Stops may require delivery & pick up
  - Vehicles have different capacity (capacitated)
  - Stops have time windows
  - Driving rules restricting length of tour, time, number of stops

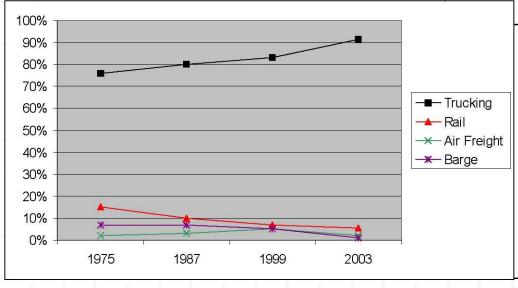
- Modes of transportation:
  - Air
  - Truck
  - Train
  - Ship
  - Pipeline
  - intermodal

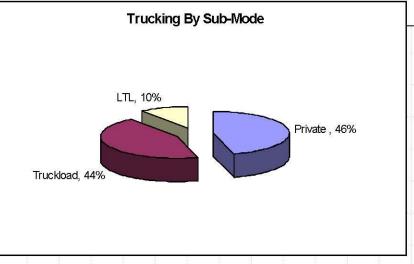
- Mode Choice Decisions:
- Air:
  - Fastest, handling slows down the process
  - Long distance high value goods
- Truck
  - Truck load vs Less-Than-Truck load
- Rail
  - Inexpensive, relatively slow

- Mode Choice Decisions:
- Intermodal
  - Air-TruckBirdyback
  - Train-TruckPiggyback
  - Ship-TruckFishyback

## Mode Comparison Matrix


|                       | Truck        | Rail                                        | Air                        | Water                      |
|-----------------------|--------------|---------------------------------------------|----------------------------|----------------------------|
| Operational<br>Cost   | Moderate     | Low                                         | High                       | Low                        |
| Market<br>Coverage    | Pt to Pt     | Terminal to Terminal                        | Terminal to<br>Terminal    | Terminal to Terminal       |
| Degree of competition | Many         | Few                                         | Moderate                   | Few                        |
| Traffic Type          | All Types    | Low to Mod<br>Value, Mod to<br>High density | High value,<br>Low density | Low value,<br>High density |
| Length of haul        | Short – Long | Medium –<br>Long                            | Long                       | Med - Long                 |
| Capacity (tons)       | 10 – 25      | 50 – 12,000                                 | 5 – 12                     | 1,000 - 6,000              |


## Mode Comparison Matrix


|                           | Truck    | Rail     | Air      | Water    |
|---------------------------|----------|----------|----------|----------|
| Speed                     | Moderate | Slow     | Fast     | Slow     |
| Availability              | High     | Moderate | Moderate | Low      |
| Consistency (delivery tin | ne) High | Moderate | Moderate | Low      |
| Loss & Damage             | Low      | High     | Low      | Moderate |
| Flexibility               | High     | Low      | Moderate | Low      |

#### Traditional Transport Modes (US)

| Mode        | 2003 revenue (\$B) |      |  |
|-------------|--------------------|------|--|
| Trucking    | 610                | 87%  |  |
| Rail        | 36                 | 5%   |  |
| Intermodal  | 8                  | 1%   |  |
| Pipeline    | 27                 | 4%   |  |
| Air Freight | 13                 | 2%   |  |
| Barge       | 8                  | 1%   |  |
|             | 702                | 100% |  |







### Logistics Managerial Issues

Capital reduction vs. Operating cost reduction

- Service level improvement
- Cost vs. Level of service trade-off
- Sales vs. Level of service trade-off

# **Logistics Decisions**

|             | Planning<br>Horizon | Data                            | Decision<br>maker    | E.g.                                                      |
|-------------|---------------------|---------------------------------|----------------------|-----------------------------------------------------------|
| Strategic   | Up to several years | Very imprecise and incomplete   | Top<br>management    | Facility location, layout                                 |
| Tactical    | Up to a year        | Disaggregated<br>data available | Middle<br>management | Resource allocation, production and distribution planning |
| Operational | Days                | Precise data available          | Lower<br>management  | Order picking,<br>vehicle<br>dispatching                  |

#### **Back to book and Course Outline**

- Book categorizes the logistics decisions in five main streams:
  - Forecasting
  - Designing logistics networks ch.3
  - Managing inventories
  - Warehouse management
  - Planning and controlling
     long-haul
     short-haul transportation
     ch.7

#### **Tentative Course Outline**

Topic
Introducing Logistics Systems 2 weeks
Introduction
Logistics Managerial Issues
Logistics Decisions
3PL
Reverse Logistics

Designing the Logistics Network 3 weeks
Introduction
Classification of Location Problems
Single-Echelon Single Commodity Location Models
Two-Echelon Multicommodity Location Models

#### **Tentative Course Outline**

**Topic** Duration Planning and Managing Long-Haul Freight Transportation 3 weeks Introduction Classification of Transportation Problems Freight Traffic Assignment Problems Fixed Charge Network Design Models Planning and Managing Short-Haul Freight Transportation 2 weeks Introduction Vehicle Routing Problems The Travelling Salesman Problems Integrated Location and Routing 2 weeks Cases