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Abstract. Amidst critical levels of nurse shortages, we partnered with Indiana University 
Health (IUH) to pioneer a novel suite of advanced data and decision analytics to support a 
new model of nurse staffing. This statewide program leverages a flexible pool of resource 
nurses who can move between the 16 IUH hospitals located in five diverse regions and 
serving more than 1.4 million residents. This program breaks the mold of traditional travel 
and resource nurses by adding flexibility to move nurses between hospitals to dynamically 
respond to short-term patient census fluctuations. This paradigm shift necessitated the 
development of analytics to execute these interhospital transfers. Specifically, we develop 
analytics to create a two-week advance on-call list for travel and a 24- to 48-hour call-in 
decision. Our Delta Coverage Analytics Suite was launched in October 2021 as a Microsoft 
PowerBI application and provides an integrated solution that has supported and continues 
to support this new staffing approach at a statewide scale. The suite contrasts with existing 
nurse scheduling tools that primarily cater to single hospitals or units. It incorporates (1) a 
novel patient census forecast based on a deep generative model capturing complex spatial- 
temporal correlations and avoiding error accumulation occurring in traditional time-series 
models and (2) a stochastic optimization that prescribes optimal on-call and deployment 
decisions. The pilot, conducted from May to June 2023, produced a remarkable reduction 
in understaffing, with estimated annual savings of $2.5 million to IUH and over $1.5 billion 
on a national scale compared with the conventional solution of hiring travel nurses. As the 
first program of its kind, our methods establish new benchmarks for evidence-based and 
data-driven nurse workforce management with the potential to transform how healthcare 
institutions approach the national nursing shortage crisis.

History: This paper has been accepted for the INFORMS Journal on Applied Analytics Special Issue—2023 
Daniel H. Wagner Prize for Excellence in the Practice of Advanced Analytics and Operations 
Research. 

Keywords: nursing shortage crisis • nursing practice innovation • analytics for staffing • machine learning forecast •
predictive-prescriptive integration

Introduction
The decades-long nurse shortage crisis has elevated to 
the level of global health emergency, with the United 
States projected to face a deficit of half a million nurses 
by 2030 and annual burnout and turnover rates exceed
ing 20%. The accelerating shortage of nurses combined 
with large spikes in demand has prompted hospitals 
and health systems to explore innovative solutions for 
both the short term and the long term. This paper pre
sents one such innovation that was codeveloped and 
successfully implemented in partnership with Indiana 
University Health (IUH): the Delta Coverage (DC) 
internal travel nursing program. As the largest health
care system in Indiana with 16 hospitals and over 9,000 
nurses, IUH serves over 1.4 million residents across 
five diverse regions spanning 14,000 square miles. The 

DC program, to the best of our knowledge, is the first 
implemented statewide program that utilizes a flexible 
pool of full-time resource nurses capable of providing 
care in multiple hospitals and adjusting their work 
location on short notice in response to understaffing. In 
contrast to typical travel nursing arrangements with 
12-week contracts, the DC program executes short- 
term deployments on the scale of days rather than 
months to dynamically respond to geographic and 
temporal fluctuations in hospital occupancies. Figure 1
shows the implemented DC network design and IUH’s 
catchment area, which highlight its statewide coverage.

Our collaborative efforts led to the development of 
the Delta Coverage Analytics Suite, a comprehensive 
solution and implementation that leverages state-of- 
the-art predictive and prescriptive analytics, without 
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which the DC program would not have been feasible. 
The DC analytics suite dynamically optimizes nurse 
deployment and staffing on a multiple-hospital scale in 
contrast with off-the-shelf nurse scheduling analytics, 

which usually target individual units or hospitals and 
do not require multiple-day advanced notice prior to 
reassigning nurses. The distinctive dynamics and com
plexities of real-time nurse deployment over a large 
network make it difficult for existing solutions to gain 
traction in the nursing market, presenting an opportu
nity for our DC analytics suite to make a significant 
step forward in addressing the nurse staffing crisis.

Implementation and Impact
Launched in October 2021, the analytics suite under
went three phases of implementation. The upper panel 
of Table 1 summarizes key performance indicators 
extrapolated to annual estimates from the pilot (the last 
phase), which ran from May to June 2023 for six weeks. 
The left half of this upper panel (“Direct impact”) 
shows the overall impact of the DC program versus a 
counterfactual that mimics hiring the same number of 
non-DC nurses (non-DC), such as travel nurses. The 
right half shows the “Marginal impact” (additional 
benefit) of the DC program over the non-DC counter
factual. Our pilot showed significant results: a 17% 
reduction in understaffing, equating to a projected 340 
fewer incidents of understaffed shifts annually. This 
was made possible by moving 10 DC nurses among six 
hospitals participating in this initial pilot. This com
pares with a 4% reduction in understaffing (90 fewer 
shifts annually) when hiring 10 non-DC nurses. That is, 
for each understaffed shift eliminated by a non-DC 
nurse, a DC nurse can mitigate 340/90� 3.7 under
staffed shifts.

Further analysis of the pilot indicates significant 
increases in nursing productivity: to achieve the same 
understaffing mitigation as provided by the 10 DC 
nurses, IUH would have needed to hire at least 16–19 

Figure 1. (Color online) The DC Network Design Consists of 
Three Pods and Spans 180 by 80 Miles 

Notes. The squares are IUH hospitals, the circles indicate the six pilot 
hospitals, and the ellipses are DC pods. DC nurses can be deployed 
to any hospital within their pod. IU, Indiana University.

Table 1. The Performance of the Delta Coverage Pilot from May 2023 to June 2023

Reduction

Direct impact Marginal impact

Understaff 
(DC)

Understaff 
(non-DC)

Understaff 
vs. non-DC

Overstaff 
vs. non-DC

Annualized shifts 340 90 250 290
Improvement, % 17 4 13 43

Work variety 
(Gini)

Sched 
stability (CV)

Hospital DC 
shifts used, %

Average 0.36 0.3a 19
Equity 0.3b 0.31 0.29b

Notes. The upper panel shows the system-wide value of the DC program. We compare the annual number 
and percentage reduction in overstaffing and understaffing with the scenario of hiring the same number of 
non-DC nurses. The lower panel shows the average value and equity score across all DC nurses and 
hospitals. “Work variety” and “Hospital DC shifts used” are measured by the Gini coefficient. “Schedule 
stability” is measured via the coefficient of variation (CV). See Appendix F for details of the calculation of 
these metrics.

aA smaller value is better, with ≤ 0:5 being very stable.
bA value of ≤ 0:3 is generally considered very equitable.
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non-DC (either regular or traveler) nurses over the six- 
week horizon, assuming that IUH staff could predict 
precisely when and where understaffing would occur 
in each hospital over the six-week period. In a more 
realistic scenario, this estimate could rise to hiring 19 
non-DC nurses; see Appendix F.1 for details. Therefore, 
one DC nurse is equivalent to 1.9 non-DC nurses in 
addressing understaffing.

This significant productivity gain is attributed to the 
flexibility of DC nurses who can be deployed to differ
ent hospitals, whereas non-DC nurses must be hired 
for a specific hospital. To illustrate, consider a scenario 
in which one hospital experiences understaffing during 
the first half of a week but in which another hospital 
faces understaffing during the second half. A single DC 
nurse can cover both hospitals, whereas the traditional 
approach would require hiring two additional nurses, 
one for each hospital. Meanwhile, the hiring of 10 DC 
nurses led to 43% fewer overstaffed shifts compared 
with hiring 10 non-DC nurses (290 fewer shifts per 
year). Note that the improvement would be even more 
significant if we accounted for the rigid 12-week con
tracts of travel nurses. For example, if a hospital experi
ences understaffing for only the first six weeks, the 
contract cannot be canceled, leading to overstaffing in 
the remaining six weeks. In other words, the DC pro
gram achieves “pooling” effects both geographically 
and temporally. In addition to the efficiencies gener
ated by the DC program, the final allocation of DC 
nurses is considered to be fair to participating hospitals 
and nurses. See the lower panel of Table 1 for a sum
mary, and see additional discussion in the Equity and 
Adoptability section.

The deliberate decision to limit the initial pilot’s 
scope stemmed from the inherent uncertainty associ
ated with this new staffing method. The size of the 
pilot, 10 DC nurses, was chosen based on the bud
get allocated to the pilot. Hiring 10 new nurses requires 
significant expenditure, and management determined 
that 10 hires provided an appropriate balance of proof 
of value and risk. Although the 10-nurse pilot may 
seem modest in scale, it was instrumental in validating 
our approach. Moreover, after this pilot’s success, we 
are actively expanding the program to include the 
entire cohort of 300 resource nurses at IUH in the DC 
program. Our analytics suite has undergone compre
hensive testing, and it is fully prepared to operate at 
this more significant scale.

Paradigm Shift
Historically, the idea of relocating nurses between hos
pitals has encountered skepticism and substantial logis
tical and cultural barriers. Although resource pooling 
is a well-known concept for improving efficiency in 
various industries, applying it to highly skilled medical 
professionals is a far more complex endeavor than 

pooling products and materials. At first glance, our 
pilot, which moves 10 nurses between hospitals, may 
appear to be a modest step. However, it represents a 
reshaping of traditional staffing paradigms that rely 
heavily on travel nurses. The core value of this pilot is 
its role as a proof of concept of an innovative solution 
that has the potential to revolutionize nursing practices 
and address a global crisis.

To elaborate, the DC program and analytics suite 
provides an alternative to the conventional response to 
shortages: hiring costly travel nurses. In contrast to DC 
nurses who can move between hospitals daily, travel 
nurses are typically hired on 12-week contracts with the 
same hospital and hence, provide at most the value of a 
traditional resource nurse. Although travel nurses can 
technically move to different hospitals after 12 weeks, 
they are unable to respond to the short-term fluctua
tions in nurse demand (one day to 3 weeks) that the DC 
nurses are designed to cover. In addition, if a travel 
nurse is not needed for the entire 12 weeks, that nurse 
still must stay on staff, resulting in unnecessary costs or 
sometimes having to send one less expensive, full-time 
nurse home when the hospital is overstaffed.

In contrast, our pilot demonstrates the feasibility of 
relocating nurses between hospitals without causing 
disruptions in hospital culture. Unlike travel nurses, 
who often lack familiarity with hospital teams and pro
cesses, DC nurses are IUH employees and thus, are 
part of the culture, seamlessly integrating into care 
teams across multiple hospitals. More importantly, the 
DC program delivers significant cost savings because 
of the lower cost of DC nurses and the “pooling” 
effects; hiring 10 DC nurses costs approximately 10 ×
$2, 698 � $26,980 per week based on an estimated 75% 
hire compensation versus a full-time unit-based nurse. 
Hiring 10 DC nurses is equivalent to hiring 19 travel 
nurses as discussed. Travel nurse salaries have easily 
exceeded $4,000 per week since the pandemic. There
fore, 19 travel nurses would cost IUH at least $76,000 
per week. This corresponds to $2.5 million annual sav
ings, even at the pilot scale.

Staffing costs have always been a significant portion 
of hospital budgets, and these expenses have surged, 
particularly since the pandemic, with travel nursing 
being a major cost driver (American Hospital Associa
tion 2022). This unsustainable financial strain will even
tually translate into higher cost burdens for patients, the 
healthcare system, and taxpayers. Within this context, 
the potential impact of our DC program is profound; 
more than 4,000 hospitals (67%) in the United States are 
associated with 626 health systems (Furukawa et al. 
2020). If each of the 600+ health systems was to employ 
10 DC nurses and the DC analytics suite, the national 
impact would exceed $1.5 billion dollars annually. 
Therefore, the significance of the DC implementation 
extends far beyond our initial pilot. Its success marks a 
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turning point in the way that healthcare institutions 
manage their nursing workforce, moving beyond the 
inefficient yet previously unavoidable practice of heavy 
reliance on travel nurses. Unlike innovations in inven
tory or supply chain management, which deal with 
goods or machines, our experiment is distinctly human 
centered. The complex nature of the healthcare industry, 
coupled with its deeply ingrained resistance to change, 
made convincing a hospital system to embrace this new 
practice initially seem nearly impossible. Now, this 
demonstration of value serves as an invitation for other 
healthcare providers to adopt similarly innovative solu
tions to meet the urgent demands of the healthcare and 
nursing industries. Notably, the achievement resulting 
from our collaboration with IUH nursing is not merely 
an enhancement of existing practices through analytics; 
rather, it leverages analytics to create an entirely new 
approach to nurse staffing that expands the boundaries 
of traditional practice.

Criticality of Operations Research Support
The concept behind Delta Coverage is to allow highly 
skilled nurses to float and work in multiple units, 
including units in other hospitals in the network. The 
ultimate goal is to move the right number of nurses to 
the right unit at the right time in order to respond rap
idly to fluctuations in staff and occupancy across hospi
tals. Unlike programs for traditional resource nurses, 
who usually float between units within an individual 
hospital and receive their assignments less than 
24 hours before a shift, Delta Coverage requires sophis
ticated advanced planning that utilizes (1) predictive 
analytics to forecast occupancies for all 16 IUH hospi
tals and (2) prescriptive analytics to determine optimal 
on-call and call-in decisions for DC nurse transfers. To 
meet this critical need, our team developed a first-of- 
its-kind analytics suite, seamlessly integrating state-of- 
the-art machine learning-based time-series predictions 

for component (1) and a new generative model-based 
stochastic optimization (SO) for component (2). Figure 2
provides a close-up view of the decision support for 
the two stages of decisions, with the “Plan” (the right 
panel of Figure 2) indicating how many nurses should 
be put on call to travel one to two weeks in advance (for 
example, from the Indianapolis Suburban Region to the 
Academic Health Center region in 10 days) and the 
“Execution” (the left panel of Figure 2) showing how 
many nurses should be called in for travel 24–48 hours 
in advance (for example, from Methodist Hospital to 
University Hospital the next day).

Our pilot program underscores the critical role of our 
operations research (OR)-based analytical solution in 
ensuring the success of this innovative practice, espe
cially in a setting where this approach significantly 
departs from traditional practices and initially faced 
skepticism and resistance. Our analysis demonstrates 
that without following the prescriptive guidelines pro
vided by the OR solution, the potential benefits would 
be significantly diminished. Before the pilot started, DC 
nurse movements were initially managed without the 
DC analytics suite for a few weeks. During this trial 
period, the DC program reduced understaffing by only 
1.2% and overstaffing by 0.15%. In contrast, if the corre
sponding decision support system (DSS) recommenda
tions had been followed (extracted from the back-end 
database), understaffing could have been reduced by 
9.4%, and overstaffing could have been reduced by 
2.4%. Without the support of the analytics suite, the 
entire innovation could have potentially been jeopar
dized because of marginal performance. The OR-driven 
decision-making process, rooted in data-driven insights, 
is the cornerstone of our program’s success. It not only 
enables efficient nurse deployment but also optimizes 
resource allocation. This exemplifies the significant 
value of combining advanced analytics with OR to 
address pressing challenges.

Figure 2. (Color online) The Graphic Shows a Snapshot of the DC Dashboard Decision Support 

Note. ISR, Indianapolis Suburban Region.
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Equity and Adoptability
The reduction in understaffing achieved through our 
DC program has long-term societal benefits, including 
improved patient care, increased professional satisfac
tion among bedside nurses, and ultimately, lives saved 
(Blegen et al. 2011, Aiken et al. 2014). The long-term 
impact of broader deployment of our DC program on 
the nursing crisis is significant given that our novel sys
tem directly addresses the primary cause of the nursing 
crisis—nurses leaving the profession because of the 
pervasive issue of understaffing (Flinkman et al. 2010).

The pilot also demonstrates the desirable fairness 
feature of our DC analytics suite, benefiting both the 
DC nurses and participating hospitals, as evidenced by 
the “Equity” row in Table 1. This crucial aspect ensures 
the sustainability and wider adoption of the program, 
making it also applicable to other hospitals nationwide 
that are facing similar challenges. In particular, one 
significant concern voiced by chief nursing officers 
(CNOs) of some IUH hospitals was that the urban hos
pitals may potentially be allocated most or all of the 
DC nurses, taking resources away from more rural hos
pitals without giving any resources back. However, the 
implementation shows promising results for the hospi
tals located in more rural communities. Figure 3 pro
vides a visual representation of the distribution of 
Delta Coverage resources among participating hospi
tals (shown in the map in Figure 4). Figure 3 illustrates 
that despite week-to-week fluctuations, the decisions 
made by the optimization engine and implemented by 
the DC manager result in a fair and equitable allocation 
of DC nurses across the participating hospitals, notably 
benefiting Arnett Hospital and Ball Memorial Hospital, 
the two most rural hospitals in the pilot. See Appendix F
for a comprehensive analysis of the pilot program’s 
performance.

To summarize, the success of our pilot highlights the 
feasibility and benefits of internal travel nurse pro
grams as an alternative solution for managing nurse 
shortages and optimizing workforce allocation, instead 
of solely relying on travel nursing. It introduces a 
new paradigm characterized by data-driven, analytics- 

Figure 3. (Color online) The Pie Charts Show the Fraction of DC Shifts Allocated to Each Hospital by Week Weighted by 
Hospital Size 

Figure 4. (Color online) The Graphic Shows a Map of the DC 
Hospitals 

Note. MH, Methodist Hospital.
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based decision making. It also has the potential for a 
far-reaching impact in the long run. This approach pro
motes workforce stability and a supportive environ
ment, resulting in a more resilient and satisfied nursing 
workforce. Moreover, our analysis shows that the DC 
program’s benefits extend to rural and marginalized 
areas that often bear the brunt of nursing shortages 
(because rural hospitals face more challenges in attract
ing and retaining nurses because of their remote loca
tions), disproportionately affecting access to quality 
healthcare and population health outcomes in these 
areas. Our solution can effectively enhance treatment 
accessibility in underserved regions. The success of the 
program in promoting both workforce stability and 
equitable distribution of nurses exemplifies the trans
formative power of analytics-based OR solutions.

Paper Organization
In the remainder of this paper, we detail our three- 
year journey of development and implementation. In 
the section Delta Coverage Analytics Suite Details and 
Challenges, we present an overview of our outline, the 
challenges encountered, and our main contributions, 
which provide the road map for subsequent sections. 
To overcome the technical challenges, we first describe 
the novel multiple-hospital and multiple-unit nursing 
demand forecast based on a deep generative model in 
the section Generative Modeling to Predict Correlated 
Hospital Occupancies. We then introduce in the sec
tion Stochastic Optimization for Network Decision 
Making the prescriptive framework based on the sto
chastic optimization. In the section Integration of 
Predictive and Prescriptive Components, we discuss 
the seamless integration of forecast and optimization; 
the generative model structure perfectly complements 
our quasi-Monte Carlo (quasi-MC) approach to over
come the curse of dimensionality in our large-scale 
decision optimization, which is critical because it must 
be solved daily even with limited computational 
resources. In the section Implementation of Delta Cov
erage and Practical Challenges, we discuss the journey 
to launch the pilot implementation, including our 
tiered approach to build trust for deploying OR ana
lytics for operational improvement. We conclude this 
paper with ongoing work in the Conclusion section.

Delta Coverage Analytics Suite Details 
and Challenges
Our analytics suite was implemented in three phases 
from October 2021 to June 2023 as a Microsoft PowerBI 
application: (1) live testing from October 2021 to April 
2022, (2) program redesign and refinement with the 
leadership team from May 2022 to April 2023, and (3) 
pilot with end-user adoption from May 2023 to June 
2023. The implemented analytics suite is fully integrated 

with IUH’s data warehouse and staffing data systems, 
and the suite runs the following procedures on a daily 
basis. 

1. On Monday, based on the demand forecast, 
scheduled nurses at each hospital, and available Delta 
Coverage resource nurses, determine the on-call list 
for a one-week period two weeks in advance (21 days 
ahead).

2. Each day at 4 a.m., update the patient census data 
and forecasts, and determine actual deployment deci
sions for the following day (24 hours later).

3. Load output into the Microsoft PowerBI dash
board to support decision making. The results of 
the previous day’s actions (deployment, census, and 
updated census prediction) are recorded for program 
evaluation and control charting to monitor ongoing 
system accuracy.
Figure 5 provides a schematic of the DC analytics 
suite design. The data required include the number 
of unit nurses and resource nurses scheduled at each 
hospital over the three-week planning horizon, the 
number of DC nurses scheduled for each day of the 
planning horizon, the current census at each hospital, 
and the history of patient movement over the past 
30–60 days (to calculate arrival, discharge, and trans
fer rates that are used in creating the forecast). More 
details of the data and system functionality are pro
vided in Appendix E.

Challenges
Given the goal of providing one to two weeks of notice 
to nurses who will be put on call to travel and 24 to 
48 hours of notice on whether a nurse will be called in, 
decisions must be made without full information sur
rounding nursing supply and demand. This required 
both accurate nurse demand forecasts across the 16 
hospitals over multiple days as well as dynamic deci
sions that consider complex spatial-temporal demand 
correlations while accommodating nurse preference 
and availability. However, these models come with sig
nificant technical challenges because of hard-to-predict 
occupancy fluctuations and multiple shift rotations that 
introduce additional correlations, influencing the deci
sions throughout the network.

The primary challenge lies in capturing the compli
cated spatial-temporal correlations in patient census 
at different hospitals over the next 21 days. As a 
most obvious example of why correlation is impor
tant, consider an infectious disease outbreak, where 
the underlying disease spread drives hospitalizations 
over different regions. Even without a major public 
health event, weather, hospital diversions, and patient 
transfers among units/hospitals create complex non
linear correlations between hospitals. In our case, the 
decision structure that manages the transfer of nurses 
between hospitals complicates the system further, which 
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contrasts with typical nurse staffing with newsvendor- 
type models because (1) traveling to remote hospitals 
requires deployed nurses to stay there for multiple 
days (“secondment”), which makes decisions critically 
depend on correlated census patterns over multiple 
days, and because (2) the DC nurse pool is shared 
across 16 hospitals, forcing the decision framework to 
also account for spatial correlations. Hence, nurse 
staffing in such a large-scale hospital network requires 
accounting for spatial-temporal correlations from both 
the predictive and prescriptive components.

Beyond the technical challenges, we also faced 
numerous practical obstacles. Penetrating the nursing 
industry with innovative practice and OR analytics 
has been exceptionally challenging as we discussed 
in the Introduction section. Convincing the industry 
to embrace a significantly different staffing model re
quires substantial evidence of its efficacy and benefits. 
Yet, off-the-shelf nurse scheduling analytics usually 
target individual units or hospitals, whereas other 
hospital analytics prioritize physicians and patients, 
often overlooking the distinctive dynamics and com
plexities of nursing. These challenges make it difficult 
for analytics solutions to gain trust to establish a 
strong foothold. We further discuss challenges during 
the implementation in Appendix F.

Literature Review
We review two main streams of literature that relate to 
the predictive and prescriptive components of our work.

Time-Series Forecast
Traditional time-series forecast tools, like autoregres
sive models or queueing-based simulations, rely on 

parametric assumptions, such as linear dependence or 
Poisson arrival processes. However, these models lack 
flexibility in handling highly time-varying dynamics 
and complex nonlinear correlations. On the other hand, 
typical machine learning prediction models often pro
vide point estimates rather than the needed distribution 
for decision making under uncertainties. Recent ad
vancements in generative models, variational autoen
coders (VAEs) and generative adversarial networks 
(GANs), have the advantage of providing distribu
tions as the output. Time-series generative models 
use GAN or VAE combined with recurrent neural 
network (RNN); for example, see Mogren (2016), Este
ban et al. (2017), and Desai et al. (2021). TimeGAN 
(Timeseries Generative Adversarial Networks) (Yoon 
et al. 2019), considered as the current state-of-the-art 
method, combines autoregressive models with GANs 
and aligns the latent representations of real and gener
ated data. However, these generative models have one 
primary limitation: learning stepwise conditional dis
tributions that may accumulate errors and overlook 
key temporal patterns essential for downstream tasks; 
see more discussion in the section Generative Modeling 
to Predict Correlated Hospital Occupancies. Moreover, 
they often lack theoretical justification and interpret
ability, and they fail to consider the structural insights 
of realistic problems. In contrast, the predictive model 
that we developed in this work effectively addresses 
the error accumulation issue and is domain adapted.

Nurse Staffing and Deployment
Nurse scheduling is a topic that has been well studied 
in the OR/MS (Medical/Surgical Unit) literature; for 
example, see Saville et al. (2019) and Griffiths et al. 

Figure 5. (Color online) The Schematic Details the Delta Coverage Decision Support Input Data and Workflow 

Note. DB, database.
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(2020) for comprehensive reviews. Recent advances in 
analytics have helped to incorporate predictive analyt
ics into nurse scheduling; for example, see Zlotnik et al. 
(2015), Ban and Rudin (2019), Spetz (2021), Anderson 
et al. (2022), and Shi et al. (2023). These studies empha
size the significant impact that sophisticated prediction 
models can have on optimizing nurse staffing levels 
and improving patient outcomes. The most relevant 
paper to our work is by Hu et al. (2024), who used pre
dicted patient demand to allow management to set 
base and surge staffing levels in an emergency depart
ment. It is important to highlight that this stream of lit
erature has predominantly focused on staffing within 
individual or hospital units, which operate on a much 
smaller scale compared with our work. Consequently, 
these studies usually do not consider complex spatial- 
temporal correlations in patient demand, which are 
crucial for making informed decisions in our research. 
Additionally, a few studies have explored patient 
transfers between hospitals motivated by emergent 
practices during the pandemic, employing robust opti
mization (Parker et al. 2020) and queueing-based fluid 
approximation (Chan et al. 2021). We emphasize that 
nurse transfer presents its own unique challenges com
pared with patient or equipment transfer. For example, 
nurses need to move back to home locations after being 
transferred rather than being transferred again (in contrast 
to equipment that can be continuously moved). In addi
tion, we need to design efficient and scalable algorithms to 
ensure practical implementations rather than treating the 
problem solely as a mathematical optimization problem.

Contributions
To the best of our knowledge, this work represents a 
novel implementation that leverages state-of-the-art 
predictive and prescriptive analytics to optimize nurse 
staffing in multiple hospitals and multiple units. Our 
focus is on a statewide program that dynamically real
locates nurses across a network, resulting in substantial 
contributions to both theory and practice. 
• Predictive innovation. We build a novel generative 

modeling framework that captures the dependence 
structure and the time dynamics among census, arrivals, 
discharges, and underlying latent variables. We design 
a temporal-based variational family based on patient- 
flow dynamics along with customized encoder-decoder 
structures for the learning. This both provides efficient 
representations of the census time series and generates 
distributional information for the decision optimization. 
Comparing our methodology with general-purpose pre
diction methods in the machine learning area, we inte
grate domain knowledge by embedding the patient 
flow dynamics into the VAE framework. This allows 
our model to be interpretable, and more importantly, it 
provides a doubly stochastic patient census process 

structure for prescribing optimal decisions in the 
decision-support phase.
• Prescriptive innovation. We formulate an SO pro

gram to effectively capture essential trade-offs in our 
nurse deployment program while considering realistic 
implementation constraints. This SO integrates with the 
predictive model, making it unique in the sense that the 
demand is a doubly stochastic process in contrast with 
a conventional SO setup. This brings new computa
tional challenges for sample-based methods because 
there are two layers of randomness. To efficiently solve 
the SO, we transform the original large-scale problem 
into a tractable linear program (LP) through a quasi- 
Monte Carlo method for scenario generation. At the 
heart of our technical innovation lies a seemingly com
plex modeling structure: doubly stochastic processes 
driven by multivariate Gaussian latent variables. This 
structure not only enhances prediction accuracy but 
also greatly facilitates the optimization via the feasibil
ity of using a quasi-Monte Carlo method, seamlessly 
integrating both prediction and optimization compo
nents. This integrated design presents a methodological 
contribution to the SO problem driven by doubly sto
chastic processes, which is understudied in the litera
ture and may spark independent technical interest. 
Moreover, it presents a scalable solution that can be 
readily implemented by our partner.
• Implementation. Unlike prior research that focused 

on small-scale staffing optimization within individual 
units or hospitals, our work extends beyond those 
boundaries. We tackle the complex task of deploying 
nurses between hospitals using decision analytics 
across an entire state. As we discuss in the Paradigm 
Shift section, our pilot program serves as a proof of 
concept, demonstrating the feasibility and effectiveness 
of this innovative practice, which initially faced skepti
cism within the industry. Delta Coverage decision ana
lytics offer an effective alternative to traditional travel 
nursing, thus making a significant contribution to the 
healthcare industry and broader society. Moreover, the 
implementation of decision analytics in the tradition
ally technology-resistant nursing industry represents 
a paradigm shift toward a more data-driven and 
evidence-based approach. This transition can foster a 
culture of continuous improvement and innovation, 
unlocking untapped potential and enabling informed 
decision making.

Generative Modeling to Predict 
Correlated Hospital Occupancies
To overcome challenges associated with existing time- 
series forecasts, such as the lack of distributional infor
mation and the lack of the flexibility to deal with 
highly time-varying dynamics and nonlinear correla
tions, we build a generative modeling framework. 
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This framework is based on Li et al. (2024), in which 
the authors developed a VAE method for temporal- 
based generative model learning. We tailor and adapt 
this framework to our specific hospital census predic
tion setting. Our adaptation captures the dependence 
structure and the time dynamics among the census, 
arrivals, discharges, and sequence of underlying latent 
variables. We specify this adapted generative model 
framework first and then highlight its advantage over 
existing methods.

Model Overview
Consider a time-series sequence {Xt, t � 0, 1, : : : , T} with 
the length of T+1, where Xt ∈ Rk is a vector that corre
sponds to the patient census (i.e., the number of patients) 
on day t in k hospital units. We denote this time-series 
census sequence as X0:T for notational simplicity. Our 
goal is to learn the joint distribution p(X0:T). The hospital 
census is driven by the daily number of arrivals At and 
daily discharges Dt, which are further driven by some 
underlying “environmental factors” modeled as latent 
variables. The pandemic is an example; the latent vari
ables correspond to the disease spread and recovery, 
which drive the number of patients who will be hospital
ized (arrivals) and how long they will need to be hospi
talized (discharges). To capture this dependence, we use 
the generative modeling framework from Li et al. (2024) 
and tailor it to the hospital census setting. Specifically, 
starting with X0�x0, the relationship of Xt, Xt�1, At, Dt 
follows

Xt � Xt�1 +At�Dt + ɛ, t � 1, : : : , T, (1) 

which captures the patient flow dynamics in hospitals— 
today’s census equals yesterday’s census plus arrivals 
and minus discharges—with some noise ɛ ~ N(0,τ). 
Note that the assumption for the normal distribution of 
Xt’s is motivated from the offered-load approximation 
in queueing networks, which are commonly used to cap
ture the distribution of customer count (census) in ser
vice systems (Green et al. 2007). The sequences of {At}

and {Dt} are further driven by the latent sequences {Za
t}

and {Zd
t }, respectively. The dependence between the 

arrival or discharge sequence and the latent sequence 
can be modeled via some stochastic differential equa
tions (SDEs). As we elaborate, we do not directly learn 
the arrivals or discharges, and thus, we leave the specifi
cation of these SDE to Appendix B.

Cumulative-Difference Learning
A common way to learn the joint distribution of {Xt}

via the generative modeling framework is through 
stepwise learning: that is, learning the conditional dis
tribution Xt |X0:t�1 recursively for each day t. This 
method has an issue: the potential accumulation of 
errors. That is, for each time step ℓ < T, if we have a 
highly inaccurate estimation for the census vector Xℓ, it 

will cause the estimations for all the censuses from ℓ+ 1 
to time T to deviate significantly from the true values. 
This is because in stepwise learning, the calculation of 
the current day’s census is based on the previous day’s 
census; for example, Xt depends on Xt�1. In other 
words, the errors accumulate over time, and this could 
lead to significant deviations from the “truth” for cen
suses in the distant future.

To overcome this issue, we adopt the cumulative- 
difference learning specified as follows. First, we use 
∆t � At�Dt to denote the difference between arrival 
and discharge variables At and Dt, respectively (i.e., the 
net changes in Xt’s). Then, we define a new variable 
that captures the cumulative difference: Γt � Xt�X0 �Pt

i�1 ∆i �
Pt

i�1(Ai �Di). Here, Γt is the cumulative 
difference between the census on day t and the initial 
census X0�x0. From Equation (1), the relationship 
between X0, Xt, and Γt can be characterized as

Xt � X0 + Γt + ɛt, ɛt ~ N(0,τt), t � 1, : : : , T: (2) 

This cumulative difference can be observed by γt �

xt� x0 (which includes the noise) in the data, where we 
use lowercase letters to denote the realized/observed 
values. The noise term ɛt captures the measurement 
errors, which are assumed to follow a multivariate nor
mal distribution with zero mean and covariance τt. 
Note that Xt ∈ Rk is a multidimensional vector for the 
census in each of the k locations: hence, the covariance 
matrix τt ∈ Rk×k. The covariance matrix is time varying 
because the noise ɛt for the cumulative difference 
changes over time.

Following the literature on generative models, we 
assume that the cumulative-difference sequence depends 
on the sequence of latent variables {Zt} through a set of 
stochastic difference equations Γt � Γt�1 + bt(∆t�1) + σt 
Zt, t � 1, : : : , T with the initial condition Γ0 � ∆0 � a0 
� d0. Here, Z0, : : : , Zk ~ N(0, Id) are independent and 
identically distributed standard Gaussian vectors in 
Rd, with the unknown parameters to be learned as 
the drift functions bt(·), the diffusion matrix σt, and 
the covariance matrix τt. The SDE here can be seen as 
a discrete-time version of the Cox–Ingersoll–Ross 
(CIR) process.

VAE Learning Framework
To learn the unknown parameters, we maximize the 
log likelihood of joint distribution p(γ1:T):

log pθ(γ1:T) � log
Z

pθ(γ1:T |z1:T)p(z1:T)dz1:T, (3) 

where z1:T � (z1, : : : , zT) denote the sequence of real
ized latent (prior) variables sampled from the prior 
distribution p(z1:T) ~ N(0, Id), γ1:T � {γ1, : : : ,γT} is the 
observed cumulative-difference sequence from data, 

Helm et al.: Delta Coverage: Analytics Journey for a Novel Nurse Deployment Program 
INFORMS Journal on Applied Analytics, 2024, vol. 54, no. 5, pp. 431–454, © 2024 INFORMS 439 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
9.

17
9.

18
2.

18
6]

 o
n 

14
 O

ct
ob

er
 2

02
5,

 a
t 1

1:
38

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



and θ represents parameters in the conditional distribu
tion for γ1:T |z1:T. The likelihood function is intractable 
and hard to evaluate numerically. We adopt the VAE 
framework for the learning task. At a high level, VAE 
optimizes the evidence lower bound (ELBO) as the sur
rogate objective, which contains two major components: 
(1) learn the conditional distribution pθ(γt |z1:t) via a 
decoder fθ(·)with parameter θ, and (2) learn qφ(z1:T |γ1:T), 
which is the variational distribution parameterized with 
fφ(·)with parameter φ and approximates the true poste
rior distribution. Part (1) is called the decoder because it 
decodes the latent variables z1:t to generate γt, whereas 
the variational distribution in part (2) is called the 
encoder because it encodes the observed γ1:t into the 
latent space via the variational distribution qφ(z1:T |γ1:T). 
We design a new temporal-based variational family 
along with customized encoder-decoder structures for 
the VAE. The complete details of the ELBO as well as 
the design of the encoder and decoders are relegated to 
Appendix B. Figure 6 characterizes the entire pipeline 
for the training and generation procedure. To summa
rize, we integrate domain knowledge by embedding the 
patient flow dynamics into the VAE framework. This 
allows our model to be interpretable, and importantly, it 
also provides a doubly stochastic patient census process 
structure for prescribing optimal decisions in the deci
sion support phase.

Advantages over Other Machine Learning 
Models and Numerical Performance
In addition to the domain-aware design with specific 
patient-flow dynamics integrated within the learning, 
our prediction model offers two other advantages over 
conventional models. First, compared with traditional 

time-series forecast models, such as Autoregressive 
Integrated Moving Average, the encoder-decoder 
structure provides great flexibility to represent com
plex functional forms and allows for the easy addition 
of useful auxiliary covariates, such as the day-of-week 
or holiday indicators, to facilitate predictions. In par
ticular, this flexible design enables the capture of 
highly nonlinear and complex spatial-temporal corre
lations that are difficult to model using conventional 
statistical methods. This is achieved through the differ
ence learning setup and the mapping from Z1:t to Γt 
(captured via the decoder fθ). Specifically, Γt is corre
lated with all previous Γ1:t�1 because of the latent vari
ables Z1:t, which also drive the correlations among all 
locations. See Calatayud et al. (2023) for a similar idea 
to capture the spatial-temporal correlations in crime 
incidents without explicitly using the latent variables.

Second, by transforming the original census predic
tion problem into learning the cumulative difference, 
our method effectively avoids the error accumulation 
issue associated with recursive prediction that is com
monly found in time-series generative models, includ
ing many state-of-the-art models, such as TimeGAN 
(Yoon et al. 2019). Because Γt represents cumulative 
differences, it only requires the initial value X0 for pre
dicting (reconstructing) Xt, in contrast to the recursive 
reconstruction method used in stepwise learning. That 
is, the cumulative-difference mapping directly con
nects Z1:t to all Γ1:t’s at once. Any bias present in the 
reconstructed Γt�1 will not impact Γt because it is 
solely determined by the latent variables. See Figure 7
for a comparison with benchmark algorithms, show
ing the advantage of our algorithm in addressing these 
issues.

Figure 6. (Color online) The Schematic Details of the Architecture of DT-VAE with Its Training and Generation Procedure 

DT-Encoder

DT-Decoder

Training

Generate

Recon.

Cum. Diff.

Notes. The DT-Encoder qφ encodes input data to the latent space; the DT-Decoder pθ generates data from encoder samples during training and 
a prior distribution during generation. Cum. Diff., cumulative difference; Recon., reconstruction; T-VAE, timeseries-variational auto encoder; 
t-SNE, t-distributed stochastic neighbor embedding.
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Stochastic Optimization for Network 
Decision Making
We built a two-stage stochastic optimization that takes 
the forecast as input and generates on-call and deploy
ment decisions over a three-week horizon, implemen
ted in a “closed-loop” rolling-horizon manner. At the 
beginning of each week, based on a 21-day forecast, 
this optimization prescribes the weekly schedule on 
how many nurses to put on call for potential deploy
ment one to two weeks in advance (step 1 of the DSS). 
Then, at the beginning of each day, based on the real
ized census and the updated forecast for the rest of the 
week, we again solve the optimization, and we use the 
first-day decision to determine the actual deployments 
on the current day (step 2 of the DSS).

In the optimization, the two levels of decisions are 
made sequentially. The first decision is the number of 
nurses to put on call each day for travel from their 
home hospital to a remote hospital. This decision is 
made prior to observing the census scenarios of the 
hospitals in the network. Then, after observing the cen
sus scenarios, the decision is made whether to deploy 
nurses who have been put on call to a remote hospital 
or to cancel the deployment so that the nurses will 
work their shifts in their home hospitals. If nurses are 
deployed to a remote hospital, they will work a mini
mum number of shifts at the remote hospital before 
returning to their home hospitals to avoid excessive 
travel. The secondment is an important design feature 
that ensures that a nurse does not have to travel two 

long-distance legs in addition to working a 12-hour 
shift.

The primary objective is to reduce system-wide 
understaffing without being too disruptive to nurses’ 
lives through excessive or unreasonable travel sche
dules. To calculate understaffing, we account for the 
fact that nurse demand and the patient census are not 
equal. Instead, we calculate nurse demand by consider
ing the patient-nurse ratios for different acuity levels; 
for example, one nurse is required for taking care of 
two patients in the intensive care unit (ICU) or four 
patients in the medical and surgical units.

In addition to understaffing costs, we consider other 
costs that can be tuned to achieve desired performance 
along multiple dimensions, such as the efficacy for the 
health system and attractiveness to DC nurses. These 
parameters include the following. The cost associated 
with the transfer decision results from two parts: (1) 
the fixed cost that compensates for the transfer and 
depends on the transfer distance and (2) the variable 
cost that compensates for premium pay during the 
length of the secondment. Tuning these transfer costs 
creates a system that has more or less churn: that is, the 
amount of travel that occurs across all DC nurses. If the 
costs are higher, then the system will generate less 
travel for the DC nurse pool on average; if the costs are 
lower, the system will generate more travel on average. 
If a transfer is cancelled during the deployment deci
sion phase, we recoup a percentage of the transfer cost. 
This parameter determines how often a nurse who is 

Figure 7. (Color online) t-SNE Visualization for Our Algorithm, a Naive Time-Series VAE, and TimeGAN for Census Genera
tion in Two Hospital Units 

(a) (b) (c)

Notes. In each panel, the two sets of dots denote the original data and the generated data. Better mixing of the dots indicates higher-quality gen
erated data. (a) DT-VAE. (b) T-VAE. (c) TimeGAN.
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put on call will actually be deployed to a remote hospi
tal. The lower the percentage of cost that can be 
recouped from the initial transfer decision, the less 
likely an on-call decision is to be canceled. Conse
quently, there will be a higher probability on average 
that a nurse will be deployed to an on-call destination. 
During program design, we adjusted these costs to 
achieve the desired system performance (see the Imple
mentation of Delta Coverage and Practical Challenges 
section for additional details).

In addition, we utilized these tuning parameters 
along with constraints to achieve several design specifi
cations, such as (1) limiting the number of times that a 
nurse is put on call but not called in, (2) limiting the 
average daily volume of nurses working remote shifts, 
(3) ensuring that nurses do not take two travel assign
ments in a row without working an intermediate shift 
in their home hospitals, and (4) ensuring equitable use 
of Delta Coverage deployments to avoid perceived (or 
real) favoritism for certain hospitals. The full model 
specification is given in Table A.1 in Appendix A.

Integration of Predictive and 
Prescriptive Components
The most difficult task in evaluating the objective 
function of the stochastic optimization is the cost-to- 
go term, which is an expectation over all possible cen
sus scenarios. To evaluate this expectation, a common 
approach is to use the sample-average method. In our 
setting, the sampling-based optimization should fully 
account for the generative modeling structure used in 
the forecast step as specified in the section Generative 
Modeling to Predict Correlated Hospital Occupancies. 
That is, instead of directly sampling the census se
quence X’s as in conventional settings, we first sample 
the latent sequence Z’s from a multivariate standard 
Gaussian distribution. Then, conditional on each sam
pled latent sequence z � z1:T, we obtain the mean and 
covariance for X |z via the decoder and sample accord
ingly. In other words, although the two-stage SO 
developed in the Stochastic Optimization for Network 
Decision Making section may appear to be standard, it 
is different in the sense that the demand is a doubly 
stochastic process, contrasting with the conventional 
SO setup. This brings new computational challenges 
for sample-based methods because there are two 
layers of randomness. One of our main technical con
tributions in this paper is to develop an efficient algo
rithm, leveraging a quasi-Monte Carlo method and 
the special doubly stochastic structure, that efficiently 
overcomes this computational challenge. This could 
generate future technical research to study this type of 
new SO, which is uncommon in the literature and 
understudied.

To specify, recall that conditional on a sampled (real
ized) sequence z1:T, the mean for the census in unit i on 
day t is µi

t,θ, and the variance is σi
t,θ. For a given initial 

census X0�x0, each Xi
t can be characterized as

Xi
t ~ (x0 +µ

i
t,θ(z1:t)) + σ

i
t,θ(z1:t) ·N(0, 1),

t � 1, : : : , T, i � 1, : : : , k, 
where N(0, 1) is a standard normal random variable. 
That is, Xi

t is a doubly stochastic random variable that 
depends on the latent variables z1:t and ζi, t ~ N(0, 1). 
For the doubly stochastic random variable, sample- 
average methods require two loops to obtain the sam
ples, where the outer loop is to sample the latent vari
ables and the inner loop is to sample the normal 
random variables ζi, t’s. In the following, we let ζ �
{ζi, t} for the set of independent and identically distrib
uted normal random variables for each station i and 
each day t used in conjunction with z1:t to create the 
doubly stochastic distribution of Xi

t. Let zm
1:t be the mth 

sample of the latent sequence, and let ζℓ be the ℓth set 
of sampled random variables. In the interest of space, 
we focus on explaining the calculation of the under
staffing part in the cost-to-go term. We define ym, ℓ

i, t as 
the auxiliary variable that approximates the value of 
the understaffing function in unit i on day t given the 
mth sample zm

1:t and the ℓth sample ζℓ:

EX
XT

t�1

Xk

i�1
(Xi

t� ni
t)
+

" #

≈
1

M · L
XM

m�1

XL

ℓ�1

XT

t�1

Xk

i�1
ym, ℓ

i, t , (4) 

s:t:

ym, ℓ
i, t ≥ (x0 +µ

i
t,θ(z

m
1:t))

+ σi
t,θ(z

m
1:t) · ζ

ℓ
i, t� ni

t, ∀i, t, ℓ, m,
(5) 

ym, ℓ
i, t ≥ 0, ∀i, t, ℓ, m:

(6) 

Here, for ease of exposition, we suppress the depen
dence of ni

t on the recourse decision, which can reduce 
the understaffing through the minimization in the sec
ond stage of the stochastic SO.

Efficient Sampling
For both the inner and outer loops, we need to sample 
from a multivariate standard Gaussian distribution 
(for z1:T and ζ, respectively) to evaluate the sample 
average in Equation (4). The benefit is that there is no 
correlation among these Gaussian random variables 
(as opposed to directly sampling from {Xi

t}’s); thus, 
we can sample each coordinate independently. The 
disadvantage is that the dimension is still high (for 
example, z1:T has 21 dimensions when we plan for 
three weeks out with T�21). The conventional Monte 
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Carlo method is a viable approach for high-dimensional 
space but suffers from larger variance, requiring a large 
number of samples to achieve accurate evaluation of the 
sample average. This imposes a great computational 
challenge for our healthcare partners because the open- 
source optimization solver cannot handle a large num
ber of samples. To address this issue, we leverage the 
quasi-Monte Carlo method, which is known to reduce 
variance in sampling; it can improve the rate of conver
gence from O(1=

ffiffiffiffiffi
M
√
) in the conventional MC method 

to O(1=M), where M is the number of samples (Caflisch 
1998). This means that a much smaller number of sam
ples is required to achieve a similar level of accuracy.

Specifically, we use a variant of the Latin hypercube 
sampling (LHS) (Owen 1998). For a desired number of 
M samples, we first divide the real line for each coor
dinate (a univariate Gaussian) into a few adjacent 
intervals defined via I � {I 1, : : : ,IM}: for example, a 
set of M disjoint partitions of R. For m � 1, : : : , M, R

Im
φ(x)dx is the integral of the density in each parti

tion Im, with φ(x) being the probability density func
tion (PDF) of the standard Gaussian. We choose the 
partition such that each 

R

Im
φ(x)dx � 1=M is equal, and 

we set a “representative value” um for partition m 
using the middle point of Im. Finally, we follow the 
LHS method to create M samples; for example, we cre
ate T independent and random permutations of the 
vector u � {u1, : : : , uM} and match the value from each 
of the T coordinates to have M sampled vectors of T 
dimensions, {zm

1:T}
M
m�1. We create the samples {ζℓ}Lℓ�1 in 

a similar way.
Notably, even though our method still requires sam

pling from a high-dimensional space, the quasi-Monte 
Carlo method allows us to sample efficiently regard
less of the dimensions, reducing sampling variance 
and the number of samples needed. This is equivalent 
to adding carefully chosen cuts to the LP as opposed to 
relying on purely random-generated cuts from the MC 
method (the traditional sample average method) to 
achieve more accurate approximation in Equation (4) 
and speed up the solution. The feasibility of using the 
LHS method benefits greatly from the multivariate 
Gaussian distribution because it allows for an explicit 
form of the PDF and independent sampling for each 
dimension. This advantage would not be possible if 
we were working directly with the census variable 
given the complexity of the joint PDF and the correla
tions. In addition, the sample is from the multivariate 
standard Gaussian (instead of the census variable), 
which can be reused to avoid resampling from X when 
the forecast is updated, and the optimization is solved 
again each day (step 2 in the DSS). The mapping from 
Z to X is an exogenous input that can be trained offline 
(for example, on a better computational platform) and 
loaded as a matrix to the LP with warm-start techni
ques to significantly increase solution speeds.

In summary, we transform a large-scale SO problem 
into a tractable LP. The seemingly complex generative 
framework actually enhances both prediction and pre
scription capabilities. This integration highlights the 
significance of the generative framework while also 
providing a portable solution for our partner’s real- 
world implementation needs.

Implementation of Delta Coverage and 
Practical Challenges
In this section, we outline our tiered implementation 
process when deploying an analytics-based solution in a 
healthcare environment, which may also apply to other 
researchers in similar endeavors. We detail the chal
lenges that we faced during the pilot in Appendix F.

The Delta Coverage analytics suite was launched in 
October 2021 as a Microsoft PowerBI application (details 
of this dashboard are in Appendix E). Because of the 
novelty of the program, we had no benchmark exam
ples. To mitigate potential risks, we executed a three- 
phase tiered implementation with report outs to gain 
buy-in from upper-level management after each phase.

Preimplementation: Counterfactual
Before implementation, we conducted a counterfactual 
analysis using two months of historical data and esti
mated a 4% reduction in understaffing by implement
ing the optimal recommendations (we did not measure 
overstaffing). This “low-cost” testing of the analytics 
suite was crucial in gaining management buy-in be
cause it demystified the “black-box” DSS and show
cased the power of OR analytics. This was especially 
valuable given the previous experiences of IUH with 
consulting companies that provided opaque solutions 
lacking actionable information.

Phase 1: Live-Test Run
Based on the promising results, we launched phase 1, 
building a PowerBI dashboard and integrating it with 
IUH data warehouses and the analytics suite. Over the 
next five months, we field tested the system live, run
ning it daily to estimate the full-time equivalent staff 
needed for support and maintenance. The results 
showed a 5% reduction in understaffing and a 1% 
reduction in overstaffing. These outcomes, along with 
strong advocacy from nursing organization leader
ship, convinced senior executive leadership to support 
a pilot.

Phase 2: Iterative Design Improvement
A critical factor in the success of our iterative design 
process was the ability to use our stochastic optimiza
tion and census forecast model to instantly project the 
impact of different design decisions. The optimization 
also has tuning parameters that can ensure that the 
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program is made operational such that it can meet tar
get specifications.

Phase 3: Pilot Program
We began by identifying a group of hospitals to partici
pate in the pilot through discussions with all of IUH’s 
chief nursing officers. Subsequently, we sought feedback 
from the CNOs of the participating hospitals and iter
ated multiple times to design a program that would be 
conducive to adoption. The recruitment process for the 
DC nurse pool was a crucial aspect of the pilot program, 
requiring considerable effort to attract highly skilled and 
location-flexible nurses. These nurses not only needed to 
be willing to travel but also had to be able to work in 
multiple clinical settings, transcending single specialties, 
acuity levels, or units. Several program specification 
redesigns were necessary to achieve the recruitment tar
get, and by the program’s launch on May 1, 2023, we 
successfully recruited 10 DC nurses both internally and 
externally to IUH. We describe the reasons behind the 
delay between the prototype and launch along with 
other practical challenges in Appendix F.

Performance Log
We built a system that automatically logs all data pulled 
for input into the optimization and forecast models as 
well as the outputs of those models. This log is updated 
each time the DC dashboard is run because some of the 
data cannot be collected after the fact; for example, data 
that come from central data warehouses might be over
written with newer data. This log has allowed us to detect 
changes in the enterprise data systems that could affect 
our model inputs, validate forecast accuracy, and monitor 
the value of the program to the nursing organization. See 
the details of the implemented dashboard in Appendix E.

Conclusion
The statewide Delta Coverage Program presents a col
laborative effort between academia and industry, and 
it is an important first step in addressing nurse staffing 
challenges. With its integrated predictive-prescriptive 
framework, the Delta Coverage Analytics Suite pro
vides real-time distributional nurse demand forecasts 
and dynamic deployment decisions, resulting in re
duced understaffing, optimized resource utilization, 
and improved nurse job satisfaction and patient care 
quality. The successful pilot phase showcased signi
ficant reductions in understaffing and overstaffing, 
demonstrating its potential for long-term impact in 
mitigating nurse shortages and burnout, especially in 
underserved regions. Notably, the success of the pilot 
goes beyond addressing immediate staffing concerns; 
it demonstrates the feasibility of a new approach to 
nurse staffing. Historically, the healthcare industry has 
heavily relied on travel nursing to address staffing 
gaps, a practice fraught with logistical and financial 
challenges. The Delta Coverage pilot, despite its seem
ingly modest scale, serves as a proof of concept for a 
more sustainable and efficient solution. By integrating 
full-time resource nurses capable of providing care in 
multiple hospitals and adapting to short-notice staff
ing needs, this innovative approach shows that it is 
possible to reduce reliance on costly and inflexible 
travel nursing contracts. This program offers a sustain
able solution to address the multifaceted challenges of 
nurse staffing, burnout, and healthcare disparities, fos
tering a nurturing environment for nurses and strate
gically allocating resources. The program’s positive 
impact extends beyond immediate staffing concerns, 
leaving a lasting impression on the well-being of the 
nursing workforce and the communities it serves.

Table A.1. List of Notations for the Stochastic Optimization Model

Notation Description

T Length of the planning horizon for on-call and deployment decisions
k Number of hospitals in the system
di

t Number of DC nurses scheduled to work at time t who have home hospital i
X A k × T random vector denoting the demand for nurses at hospitals i � 1, : : : , k in time period t � 1, : : : , T
aij

t Decision variable denoting how many nurses to put on call for travel from location i to location j at time t
bij

t Decision variable denoting how many nurses to deploy from location i to location j at time t (this variable depends on the 
realization of the nurse demand random vector, X, as the decision is made after observing the census at all the hospitals)

ni
t The number of nurses initially scheduled at hospital i at time t prior to DC deployment

ni
t The total (net) number of nurses at hospital i at time period t after deployment decisions, bt

ij, have been executed
Sij The number of consecutive shifts a nurse must work at hospital j having been transferred from hospital i
cu Unit nurse understaffing cost
cij

t Cost of putting a nurse on call for travel from hospital i to hospital j at time t
cp Cost of premium pay for nurses who are working at a remote hospital
η The amount of additional travel cost recouped by canceling a deployment

Appendix A. Model Specifications and List of Notations
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A.1. Stochastic Optimization Model for DC Program 
Decision Support
We denote the on-call decision as a � {aij

t }, where each aij
t is 

the number of DC nurses to put on call for a future transfer 
from unit i to unit j on day t. Similarly, we denote the 
recourse call-in decision as b � {bij

t }, which is made after 
seeing the realization of the census sample path X � {Xi

t}. 
The recourse decision corresponds to either activating 
the transfer of an on-call nurse or canceling the transfer. 
The transferred nurse is committed to work on multiple 
shifts at unit j for a length of Sij days, referred to as the 
secondment.

Nursing shortage is captured via the understaffing cost, cu. 
The cost associated with the transfer decision a has two com
ponents: (1) the fixed cost that compensates for the transfer 
cij

t , which depends on the transfer distance, and (2) the vari
able cost that compensates for the length of the secondment 
cpSij. If a transfer is cancelled during recourse, we recoup 1�
η percentage of the transfer cost. Mathematically, the objec
tive is

min
a

XT

t�1

Xk

i�1

Xk

j�1
(cij

t + cpSij)aij
t +EX[V(a, b, X)], (A.1) 

V(a, b, X)

�min
b

XT

t�1

Xk

i�1

Xk

j�1
[cu(Xi

t� ni
t)
+
� (1� η)(cij

t + cpSij)(aij
t � bij

t )
+
],

(A.2) 

subject to

Xk

j�1
aij

t ≤ di
t �
Xk

j�1

Xt�1

ℓ�(t�Sij+1, 1)+
aij
ℓ ,

Xk

j�1
bij

t ≤
Xk

j�1
aij

t , ∀i, t,

(A.3) 

where di
t is the number of available DC nurses with home 

location i on day t and ni
t is the number of nurses available at 

location i on day t after considering the actual deployment 
(recourse decision) and secondment to the number of sched
uled regular nurses ni

t:

ni
t � ni

t �
Xk

j�1

Xt

ℓ�t�Sij

bij
ℓ +
Xk

j�1

Xt

ℓ�t�Sji

bji
ℓ : (A.4) 

Appendix B. More Details on the 
Generative Model

B.1. SDE for Modeling Generative 
Dependence Structure
Motivated by the stochastic Susceptible-Infected-Recov
ered (SIR) model (Allen 2008, 2017), we assume that the 
arrivals At and discharges Dt follow

A0 � a0; D0 � d0;

At � At�1 + ba(At�1) + σaZa
t , t � 1, : : : , T (B.1) 

Dt � Dt�1 + bd(Dt�1) + σdZd
t , t � 1, : : : , T, (B.2) 

where the sequences of latent variables Za
1, : : : , Za

T ~iid N (0, Ik)

and Zd
1, : : : , Zd

T ~iid N (0, Ik) are all independent and identically 
distributed standard Gaussian vectors in Rk and drive the 
arrival and discharge processes. Equations (B.1) and (B.2) can 
be seen as the discretized version of the original stochastic dif
ferential equations for the stochastic SIR model, with ba(·) and 
bd(·) as the (unknown) drift functions and σaZa

t and σdZd
t as 

the (unknown) diffusion terms.

B.2. VAE Learning Framework
Instead of directly evaluating the likelihood function pθ(γ1:T)

given in Equation (3), VAE optimizes the ELBO as the surrogate 

Table A.2. List of Notations for the Prediction Model

Notation Description

Xt A vector that corresponds to the patient census (number of patients) on day t in k hospital units
At Daily arrivals to the hospital
Dt Daily discharges from the hospital
ɛt The measurement errors
∆t The difference between arrival and discharge variables At and Dt (for example, the net changes in Xt’s); that is, ∆t �At �Dt
Za

t Sequence of latent random variables driving the arrival process, At

Zd
t Sequence of latent random variables driving the departure process, Dt

Zt Sequence of latent variables driving the cumulative differences between arrivals and departures
z1:T Sequence of realized latent (prior) variables
Γt The cumulative difference between the census on day t and the initial census X0 � x0
γ1:T The observed cumulative difference sequence from data
θ The set of parameters to be learned to forecast the census
pθ(γt, z1:t) The conditional distribution of the cumulative difference as a function of the latent variables z
qφ(z1:T |γ1:T) The variational distribution that approximates the true posterior distribution
fθ(·) The parameterized decoder function with parameter θ to learn conditional distribution pθ
fφ(·) The parameterized encoder function with parameter φ for the variational distribution qφ
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objective derived in our setting:

log pθ(γ1:T) � log
Z

pθ(γ1:T, z1:T)dz1:T

� log
Z

pθ(γ1:T, z1:T)
qφ(z1:T | γ1:T)

qφ(z1:T | γ1:T)
dz1:T

≥ Ez1:T~qφ log
pθ(γ1:T, z1:T)

qφ(z1:T |γ1:T)

� �� �

� Ez1:T~qφ log

YT
t�1 p(γt |z1:t))p(zt |z1:t�1)
YT

t�1 qφ(zt |z1:t�1,γ1:t)

0

@

1

A

2

4

3

5

�
XT

t�1
Ez1:t logp(γt |z1:t)

�Ez1:t�1 DKL(qφ(zt |z1:t�1,γ1:t) ||N(0, I))

� L(γ1:T):

(B.3) 

Recall that the key for VAE evaluation comprises two parts. 
The first part is to learn the conditional distribution pθ(γt |z1:t)

via a decoder fθ(·) with parameter θ. It is called the decoder 
because it decodes the latent variables z1:t to generate γt. The 
second part is to learn qφ(z1:T |γ1:T), which is the variational 
distribution with parameter φ that approximates the true pos
terior distribution. This variational distribution is called the 
encoder, parameterized with fφ(·)with parameter φ. It encodes 
observed γ1:t into the latent space via the variational distribu
tion qφ(z1:T |γ1:T). In implementation, we use an additional 
hyperparameter λ > 0 in front of the Kullback-Leibler term to 
further balance the two parts in ELBO.

In the rest of this section, we will use fθ(z1:t) and pθ(γt |z1:t)

interchangeably, and we use zprior to denote samples from the 
prior distribution; we will use fφ(γ1:t) and pφ(z1:t |γ1:t) inter
changeably, and we will use zpost to denote samples from the 
posterior distribution.

B.2.1. Decoder. A key step in deriving the ELBO in Equa
tion (B.3), particularly from line 3 to line 4, is via the following 
decomposition:

pθ(γ1:T, z1:T) � pθ(γ1:T |z1:T)p(z1:T)

�
YT

t�1
pθ(γt |z1:t)

 !

p(z1:T)

�
YT

t�1
pθ(γt |z1:t)

YT

t�1
p(zt |z1:t�1), (B.4) 

where p(zt |z1:t�1) denotes the conditional prior distribution for 
latent variables zt. We make an important assumption here for 
the conditional distribution pθ(γ1:T |z1:T) and prior distribution 
p(z1:T). As discussed, in the cumulative-difference learning 
setup, each γt depends on latent variables z1:t to avoid error 
accumulation. This essentially makes γt conditionally indepen
dent across different time steps given realized latent variables 
z1:t. That is, for any two time steps w ≠ v ≤ T, the cumulative- 

difference variables (γw |z1:w)⊥ (γv |z1:v) are independent con
ditional on corresponding latent variables. This assumption 
is crucial, allowing the transformation from pθ(γ1:T |z1:T) to 
the product form 

QT
t�1 pθ(γt |z1:t).

Following the VAE literature, we assume the conditional 
distribution pθ(γt |z1:t) ~ N(µt,θ,σt,θ), a multivariate Gaussian 
distribution with mean µt,θ and diagonal covariance matrix 
σt,θ for time t. This is a reasonable assumption in our setting 
because the difference in census can be either positive or nega
tive (in contrast to arrival and departure times, which must 
be positive). Under the Gaussian assumption, the decoder fθ 
is represented by the mean and covariance matrix, denoted as 
fθ � {(µt,θ ,σt,θ)}t, with the subscript t highlighting the time 
dependency. For the prior distribution, we assume they are 
independent Gaussian, namely p(zt |z1:t�1) ~ N(0, I), with I ∈
Rd×d being the identity matrix. Although the priors are 
assumed to be independent, the decoder fθ allows us to cap
ture the underlying complex correlations.

B.2.2. Encoder. We factor the variational distribution 
qφ(z1:T |Γ1:T) as

qφ(z1:T |γ1:T) �
YT

t�1
qφ(zt |z1:t�1,γ1:t): (B.5) 

During the training stage, we will sample zpost
t from the poste

rior distribution qφ(zt |z1:t�1,γ1:t) and let the decoder recon
struct the observed γt’s. The sampling is recursive because we 
need to condition on sampled variables zpost

1:t�1 and observed 
γ1:t when sampling for time t. Following the VAE literature, 
we assume that variational distribution qφ(zt |z1:t�1,γ1:t) ~ 
N(µt,φ,σt,φ) is also a multivariate Gaussian distribution with 
mean µt,φ and diagonal covariance matrix σt,φ. Under this 
Gaussian assumption, the encoder fφ is represented by the 
mean and covariance matrix, denoted as fφ � {(µt,φ,σt,φ)}t, 
with the subscript t highlighting the time dependency.

B.2.3. Decoder Design. For the generative process, 
Difference-learning Timeseries Variational Autoencoder (DT- 
VAE) uses a decoder fθ(·) with parameter θ to decode latent 
variables z1:t to generate γt. That is, the decoder fθ(·) learns the 
conditional distribution pθ(γt |z1:t). Recall that a key step in 
deriving the ELBO in Equation (B.3), particularly from line 3 to 
line 4, is via the decomposition for pθ(γ1:T, z1:T) as given in 
Equation (B.4), where pθ(γt |z1:t) denotes the approximation of 
the true conditional distribution p(γt |z1:t) and p(zt |z1:t�1)

denotes the conditional prior distribution for latent variables zt.
From (B.4), we make an important assumption on the condi

tional distribution pθ(γ1:T |z1:T) and prior distribution p(z1:T). 
As previously mentioned, for each γt, it solely depends 
on latent variables z1:t. This essentially makes γt conditionally 
independent across different time steps given the latent vari
ables zprior

1:t . That is, for any two time steps w ≠ v ≤ T, the 
cumulative-difference variables (γw |z1:w)⊥(γv |z1:v) are inde
pendent conditional on corresponding latent variables. This 
assumption is crucial, allowing the transformation from 
pθ(γ1:T |z1:T) to the product form 

QT
t�1 pθ(γt |z1:t).

For the prior distribution, we assume they are independent 
Gaussian, namely p(zt |z1:t) ~ N(0, I). Although zprior

t ’s are inde
pendent, the decoder fθ still allows us to capture the underly
ing correlation via the relationship between γt and zprior

1:t . 
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Specifically, we design the decoder via a recurrent network 
fθ1 , enclosing the information zprior

1:t from all time steps recur
sively, with a feed-forward network fθ2 , further transforming 
the input to µt,θ and σt,θ. We denote

ht,θ1 � fθ1 (ht�1,θ1 , zt) (µt,θ,σt,θ) � fθ2 (ht), (B.6) 

where ht,θ1 is the hidden state in the RNN structure fθ1 .

B.2.4. Encoder Design. DT-VAE learns an encoder fφ(·)
with parameter φ to encode observed γ1:t into the varia
tional (posterior) distribution qφ(z1:T |γ1:T). Recall that the 
posterior distribution qφ(z1:T |Γ1:T) can be written as Equa
tion (B.5). During the training stage, we will sample zpost

t 
from the posterior distribution qφ(zt |z1:t�1,γ1:t) and let the 
decoder reconstruct the observed γt’s. For samples from 
posterior distribution, at each t, we sample zpost

t from the 
distribution conditioned on the historical posterior vari
ables zpost

1:t�1 and all observed γ1:t.
Following the VAE literature, we assume that variational 

distribution qφ(zt |z1:t�1,γ1:t) ~ N(µt,φ,σt,φ), a Gaussian distri
bution with a diagonal covariance matrix, where µt,φ and σt,φ 
are learned using the encoder fφ. To capture the reliance of 
historical information on both zpost’s and γ’s, we decompose 
fφ into three functions with parameters φ1, φ2, and φ3:

ht,φ1
� fφ1
(ht�1,φ1

,γt)

µt,φ � fφ2
(ht,φ1

,µt�1,φ)

σt,φ � fφ3
(ht,φ1

,σt�1,φ), (B.7) 

where ht,φ1 
is the hidden state in RNN structure fφ1

. For each 
time step, ht,φ1 

encodes all observed γ1:t. The RNN structure 
fφ2 

will output the mean of posterior distribution µt,φ by uti
lizing the ht,φ1 

and previous µt�1,φ. Therefore, for each time 
step, the current mean µt,φ contains information of previous 
means µ1:t�1,φ, which resemble the conditional structure in 
qφ(zt |z1:t�1,γ1:t) from Equation (B.5). Similarly, the RNN 
structure fφ3 

outputs σt, q by utilizing ht,φ1 
and σt�1,φ, which 

contain prior information of γ1:t and zpost
1:t�1. It is noteworthy 

that the recursive design is guided by our mathematical 
results, which turn out to be critical. We tried other heuristic 
designs without properly using the prior information as sug
gested by the theoretical form, and they failed to learn, which 
highlights the importance of theoretical justification.

B.2.5. Computational Time. The DT-VAE method typically 
requires 500–1,500 epochs in training. This is far fewer than the 
5,000–10,000 training epochs required by TimeGAN. The actual 
training time of DT-VAE varies by the training data size. Data 
sets with around 500 sample paths require about 10–20 minutes 
of training and about 5 minutes to generate 1,000 sample paths. 
This is significantly more efficient compared with TimeGAN, 
which can take at least three hours for training.

Appendix C. Prediction Performance Evaluation
We demonstrate the advantage of our method (the genera
tive modeling structure and cumulative-difference learning) 
over traditional statistical methods, such as Autoregressive 
(AR) models. Our evaluation platform is a semisynthetic 

hospital census data set created from a simulation model, 
which is calibrated with real data from a partner hospital. 
Specifically, the daily arrivals a(t) follow the discretized Cox– 
Ingersoll–Ross process (Cox et al. 2005), with the drift 
function depending on the day of week and the daily dis
charges d(t) coming from simulating patient movements 
within hospital units. All the parameters to simulate the arri
vals and discharges are calculated empirically using real 
data. We provide an overview of the CIR model, a description 
of the real data set, and details of the semisynthetic genera
tion in the rest of this section.

C.1. Cox–Ingersoll–Ross Model
In generating the arrival process, we assume that the arrival 
rates on different days are random and that they follow the 
CIR process. The standard CIR process can be characterized 
by the following SDE:

dr(t) � α(µ� r(t))dt + σ
ffiffiffiffiffiffiffi
r(t)

p
dW(t), (C.1) 

where Wt is the Wiener process, µ represents the long-term 
mean, α represents the speed of the adjustment to the long- 
term mean, and σ represents the variation of the process. 
Note that the drift function, α(µ� r(t)), in the standard CIR 
process is time stationary. However, the real data show that 
the hospital arrivals exhibit a strong day-of-week pattern. We 
describe how we modify the standard CIR process to gener
ate a time-varying drift function in Appendix C.2.

To simulate arrivals from the CIR model, one common 
approach is through the Euler–Maruyama method, which 
provides an approximated numerical solution:

r(t) � max(r(t� 1) + α(µ� r(t� 1))∆t

+ σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
|r(t� 1) |

p ffiffiffiffiffi
∆t
√

zt, 0), (C.2) 

where the process uses max(·, 0) to ensure that no negative 
values appear during the approximation, which is one of the 
properties in the CIR model.

C.2. Description of the Real Data Set from IUH
The real data set comes from an IUH hospital in Indiana. The 
data set contains patient-level movement history between dif
ferent units in the hospital. The data span from 2020 to 2021. 
The units can be categorized into two types: medical/surgical 
units (non-ICU units) and ICU units. For each patient, the 
data contain time stamps on arrival time to each unit, the 
transfer in/out times between units, and the discharge time 
from the hospital. Using these time stamps, we can estimate 
the empirical daily arrival rates for the two types of units and 
the length-of-stay distributions in each type of unit.

We use the following notations for these estimated quanti
ties. For each day, ahos, t �

P
uau, t denotes the total arrival rate 

on the day t, and au, t denotes the arrival rate to units u, where 
u ∈U � {nonICU, ICU} denotes one of the two types of units. 
Assuming we have T � 7n days in total with n samples for 
each day of week, we denote 
• mean of arrival rate by day of week: {µ1, : : : ,µ7}, where 

µi � 1=n
Pn

w�0(ahos, i+7w);

• standard deviation for arrival rate by day of week: σi � 1=n 
Pn

w�0(ahos, i+7w �µi);
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• routing probability: pu � 1=T
PT

t�1
au, t

ahos, t 
for each u; and

• Length of Stay (LOS) distribution: pdis
u, s �

Xu, s
Xu

;
where Xu, s denotes the number of patients staying in unit 
category u for s days and Xu denotes the total number of 
patients staying in this unit category. For the LOS distribu
tion, we further assume that the maximum LOS is four 
days (validated by the data because the proportion of 
patients staying longer than four days is minimal). With 
these parameters estimated empirically from the real data 
set, we then use them to generate semisynthetic data in 
Algorithm C.1.

Algorithm C.1 (Semisynthetic Data Generation)
Generate arrivals. First, we generate the arrivals by the 
numerical CIR process with the parameters {µ1, : : : ,µ7}

depending on the day of week:

a(t) �max(a(t� 1) + αt(µt%7 � a(t� 1))∆t

+ σt%7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
|a(t� 1) |

p ffiffiffiffiffi
∆t
√

zt, 0):

Assign arrivals to units. For each of unit u ∈ {MS, ICU},

au(t) � Bionomial(a(t), pu), for u ∈ {nonICU, ICU}:

Generate discharges. Using the length-of-stay probabil
ity table,

d̃u(t + i) �Multinomial(au(t), pdis
u, i), for i ∈ {0, 1, : : : , 4}

du(t) �
Xj

j�t�4
d̃u(j):

Generate census. Generating census according to

xu(t) � xu(t� 1) + au(t)� du(t):

Algorithm C.1 describes the procedure of generating the 
semisynthetic data. Note that to capture the day-of-week 
pattern in the arrival rates, we modify the standard CIR pro
cess to generate a time-varying drift function, where µi fol
lows a periodic pattern with one week (seven days) as the 
period. Correspondingly, we need to adjust the mean rever
sion factor αt to be time varying through a weekly update 
scheme. For example, set α1, : : : ,α7 � 0:1 and α8, : : : ,α14 � 0:2. 
We let αt gradually increase to one during the first five weeks 
to capture the transient effect. The primary benefit of this 
semisynthetic generation via Algorithm C.1 is that it allows 
us to calculate the “ground truth” parameters, such as the 
expected daily number of arrivals and discharges. Using 
these calculated numbers, we could compare them with the 
corresponding results estimated from the generative models 
for evaluation.

Appendix D. Enlarged Figure for Delta Coverage 
Network Design

In this appendix, we discuss the final design of the Delta Cov
erage program as implemented at the Indiana University 
Health System. The small circles in Figure D.1 are participat
ing hospitals. The larger circles Algorithm C.1 are the pods of 
hospitals, each with its own Delta Coverage team. A Delta 
Coverage team only floats within its own pod.

Appendix E. Delta Coverage Dashboard 
Functionality and Features

In this section, we describe the Delta Coverage Dashboard 
and how it supports on-call and deployment decision making 
in a variety of ways.

E.1. Dashboard Functionality and Usage
Once or twice a day, non-DC staffing data for the next 21 days 
are pulled from the Kronos timekeeping database and from 
a separate DC staffing database. The latter was manually 
curated to allow the DC program’s implementation team to 
have more control over the data stream as the program was 
being rolled out. We also pull patient location data from the 
enterprise data warehouse; these data provide information 
about individual patient movement for the past 30 days. The 
movement data contain the location of each patient at each 
hour of the day. The granular patient location is then sent 
through a data pipeline, where it is cleaned of (significant) 
data errors and converted into daily patient arrival rates 
(emergency department or elective admission), discharge 
rates, and occupancy acuity levels (medical/surgical, pro
gressive care unit (PCU), or ICU) at each hospital. The data 
are gathered separately for day versus night shifts, with day- 
shift data starting from 11 a.m. and night-shift data starting 
from 11 p.m.

Once the data pass through the pipeline, they are entered 
into the prediction model, which can generate census sample 

Figure D.1. (Color online) The Final Network Configuration 
for the Delta Coverage Program 

Note. IU, Indiana University.
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paths to input into the stochastic optimization model. The 
optimization run uses a warm-start approach. That is, the 
algorithm starts from the previous day’s optimization solu
tions to most efficiently use the computational power allo
cated to the pilot. The on-call and deployment decisions 
along with the current staffing plan and expected nurse 
demand at each hospital are entered into a platform-agnostic 
comma separated value (CSV) file. The output data file is 
then read into a user interface that the Delta Coverage design 
team created to inform Delta Coverage scheduling and 
deployment decisions, as shown in Figure E.1. The interface 
allows the user to display different views of the data in 
graphical form. For example, the lower right panel of Figure 
E.1 plots the nurse demand versus the staffing. It also allows 
the user to filter the table based on the selected criteria. The 
user can select day or night shift (in the upper left panel of 
Figure E.1), any subset of hospitals (in the second panel down 
the left side of Figure E.1), and the deployment group, which 
denotes the set of DC nurses being considered for transfer.

The DC nurse manager deploys DC nurses scheduled for 
the current day based on the optimization model’s deploy
ment suggestions. Once a week, the DC manager informs the 
DC nurses of their planned work (on-call) locations based on 
the optimal on-call decisions generated by the most recent 
run of the full optimization model.

E.2. Dashboard Visualization Features
One of the key features of the Delta Coverage Analytics appli
cation is a suite of visualizations to help users understand the 
impact of the nurse deployment actions on the broader sys
tem. The visualizations allow for 

1. heat maps detailing the level of understaffing at 
all the hospitals before and after the deployment deci
sions and

2. graphs of the past and forecasted occupancies and 
the nursing staff utilization before and after deployment 
decisions.

These features are integral to the Delta Coverage decision 
and execution process because they allow 

1. users to test what-if scenarios and get immediate feed
back on how changing the optimal recommendations would 
impact the system and

2. management to provide evidence to the individual hos
pitals of why the decisions are being made and how the deci
sions increase fairness in the system.

As an example, the lower right panel of Figure E.1 dis
plays the forecasted demand and scheduled nurses over the 
next two weeks. In the lower left panel of Figure E.1, users 
can adjust which staffing plan to view. On the main page 
(not displayed here), they can view the staffing and demand 
based on the current schedule or the recommended schedule 
after the optimal deployment decisions. Therefore, man
agers can immediately see the impact of the optimization 
recommendation.

Appendix F. Detailed Postpilot Analysis and 
Lessons Learned

Our system included three phases of performance runs that 
are associated with the three phases of implementation. In the 
preimplementation phase (historical counterfactual), the two- 
month analysis suggested a 4% reduction in understaffing. In 
phases 1 and 2 (the live testing and tuning of the analytics 

Figure E.1. (Color online) This Screenshot Shows the Full View of the Delta Coverage Dashboard Front Page 

Source. IU Health Delta Coverage PowerBI Dashboard, Jacob Cecil.
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suite), we projected that the Delta Coverage program could 
potentially reduce understaffing by 5% and reduce overstaff
ing by 1%. The phase 3 performance analysis was the most 
critical given that it was based on the full pilot implementa
tion, where we were able to learn exactly how the analytics 
suite could be used in combination with additional knowl
edge of nurse managers using the dashboard. To perform the 
analysis, we compared two cases for a fair “apples to apples” 
assessment of the pilot program.

Case F.1. We counterfactually assigned each Delta Coverage 
nurse to a fixed hospital location (“home hospital”) and did 
not allow that nurse to work at any other hospital (i.e., stan
dard pre-Delta Coverage approach).

Case F.2. We compare the counterfactual results with the 
actual implementation results from the pilot (which involved 
moving nurses based on the Delta Coverage analytics tool).

From the actual historical data, we were able to pull 
the staffing schedule, including the number of unit-based 
nurses, resource nurses, and travel nurses who worked and 
the number of patients by acuity (ICU, PCU, and medical/ 
surgical). We calculated the number of nurses needed on 
each shift by taking the number of patients of each acuity 
and dividing by the industry standard patient-to-nurse ratio 
for that acuity level. For example, if there are 10 ICU patients 
(two to one ratio for ICU), 24 PCU patients (three to one ratio 
for PCU), and 100 medical/surgical patients (five to one ratio 
for medical/surgical), the number of nurses required would 
be 10=2+ 24=3+ 100=5 � 33. We calculate the patient census 
at 11 a.m. for the day shift and 11 p.m. for the night shift. To 
calculate the amount of understaffing, we subtract the num
ber of nurses working in the hospital on a given shift from 
the number of nurses required in that hospital on that shift. 
In the previous example, if there were 32 nurses working, 
then the understaffing would be 33� 32 � 1 nurse. We trun
cate understaffing at zero so that if there had been 34 nurses 
in the example, then understaffing would be (33� 34)+ � 0. 
The amount of overstaffing is calculated similarly.

For each shift that a Delta Coverage nurse worked, we 
compared the actual amount of understaffing that occurred 
with the amount of understaffing that would have occurred 
had the Delta Coverage nurse worked the shift in that 
nurse’s counterfactual “home hospital.” We utilized the 
same method for overstaffing. In Appendix F.1, we present 
the impact of Delta Coverage on the system as a whole by 
calculating understaffing and overstaffing metrics across all 
Delta Coverage shifts in all participating hospitals.

F.1. System-Level Metrics
F.1.1. Phases 1 and 2. To test our system prior to imple
mentation, we pulled the most recent two months of histori
cal data with staffing and patient census for each hospital on 
each shift. We then ran the model iteratively starting with the 
first date in the data set. Specifically, we provided the model 
with the staffing and patient census for the current date (start
ing with the first date) and the future staffing schedules for 
the Delta Coverage planning horizon (e.g., the next three 
weeks). We then ran the model to determine the Delta Cover
age nurse deployment decisions. We then added the counter
factual Delta Coverage nurses to the staffing plan for all the 
days and shifts covered by the Delta Coverage planning 

horizon. We incremented the date by one, moving to the next 
day in the data. Using the Delta Coverage deployment deci
sions, we then calculated the understaffing and overstaffing 
for this subsequent day as if the Delta Coverage tools’ plan 
had, in fact, been implemented. We continued running the 
tool on each consecutive day until reaching the end of the 
data and then summed the understaffing and overstaffing 
over all shifts in the historical data. For comparison, we cre
ated a second counterfactual in which the Delta Coverage 
nurses were instead assigned to a single hospital and not 
allowed to deploy to other hospitals. Using the same number 
of (counterfactual) nurses on each shift along with their hos
pital assignments, we modified the staffing plan by adding 
those nurses to the shifts at their assigned home hospital and 
calculated the understaffing and overstaffing on each shift. 
We then added the measures over the entire time horizon. In 
this experiment, we assigned home hospitals to the non-DC 
counterfactual nurses by spreading them evenly across the 
six pilot hospitals, with the larger hospitals assigned an addi
tional nurse because the number of nurses was not evenly 
divisible by six.

F.1.2. Phase 3. The results of the pilot from May 7 to June 
23, 2023 were better than our initial dry run had projected. In 
this analysis, we consider the impact that the Delta Coverage 
program has had on understaffing and overstaffing in terms 
of the number of understaffed shifts eliminated, the percent
age reduction in understaffing, and the estimated annual cost 
savings from the program.

F.1.3. Understaffing. Among the shifts that the DC nurses 
worked, in a little more than one month (36 days), the Delta 
Coverage pilot reduced understaffing by 33.5 shifts, which is 
equivalent to 
• a 17% reduction in understaffing and
• 340 fewer understaffed shifts per year (34 shifts per DC 

nurse per year).
We obtain the annual estimate by extrapolating from the 

36-day pilot by estimating the daily reduction in understaff
ing and then multiplying by 365: that is, 365 × 33:5=36 � 340 
annualized shifts. We acknowledge the limitations of this 
method given the potential for changes in system characteris
tics over the course of an entire year.

Next, we compare the efficacy of hiring DC nurses versus 
hiring travel nurses, which are traditionally used to cover 
supply-demand mismatches. This allows us to demonstrate 
the marginal impact of the Delta Coverage Analytics Suite by 
comparing the program’s actual performance with the coun
terfactual performance of hiring 10 travel nurses instead of 
the 10 DC nurses. Although we use travel nurses as our exam
ple because they are typically hired to cover demand and 
staffing mismatches, the following analysis applies to hiring 
any type of non-DC nurse.

To execute our counterfactual, we use the staffing data for 
all of the days/shifts (day versus night) that the Delta Cov
erage nurse worked as well as data on the number of 
patients in the participating hospitals. We then create a sim
ulated scenario in which Delta Coverage nurses work all of 
their shifts in their home hospitals instead of where they 
actually worked. Recall that travel nurses (non-DC nurses) 
do not move between hospitals, so the scenario described is 
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the equivalent of hiring 10 travel nurses into the DC nurses’ 
home hospitals instead of the DC nurses who were actually 
utilized. For example, for a DC nurse whose home hospital 
is IUH Bloomington Hospital, every time that the nurse is 
scheduled for a shift, we increase the staffing level at Bloom
ington by one and reduce the staffing number where the 
nurse actually worked the shift by one. This simulates 
nurses working all their shifts at their home hospitals 
instead of traveling between multiple hospitals.

From the adjusted staffing schedules, we obtain the 
amount of understaffing and overstaffing that would have 
occurred if 10 travel nurses had been hired instead of the 10 
DC nurses using the same method as in phases 1 and 2. Com
paring the understaffing metrics, 10 travel (non-DC) nurses 
would have only reduced understaffing by nine shifts (in 
36 days), which is equivalent to 
• a 4% reduction in understaffing and
• 90 fewer understaffed shifts per year, equating to 9 shifts 

per non-DC nurse per year.
This is a much lower magnitude compared with the reduc

tion of 33.5 shifts (17%) from the DC pilot, which translates 
into 340 fewer understaffed shifts annually. This projection 
demonstrates the substantial marginal benefit of hiring Delta 
Coverage nurses as opposed to travel nurses; hiring Delta 
Coverage nurses would result in 250 � 340� 90 fewer under
staffed shifts than hiring traditional travel nurses. Stated 
differently, for every understaffed shift avoided by hiring 
a travel nurse, 340=90 � 3:7 understaffed shifts would be 
avoided by hiring a DC nurse instead.

F.1.4. Staffing Cost. Next, we consider the financial impli
cations of the Delta Coverage program. Specifically, we esti
mate the number of travel nurses who would need to be 
hired to achieve the same reduction in understaffing achieved 
by the 10 DC nurses over the course of the pilot. We begin by 
calculating the actual level and the travel nurse counterfac
tual level of understaffing at each hospital on each shift (day/ 
night) for each day of the pilot. We then subtract the Delta 
Coverage understaffing from the travel nurse understaffing 
shift by shift. Thus, if understaffing at a given hospital on a 
given shift was better (lower) using the travel nurse staffing 
plan, the result is negative; conversely, if the Delta Coverage 
staffing plan was better, the result is positive. We then sum 
up the differences in understaffing at the hospital-shift (day/ 
night) level across all days of the pilot to obtain the total dif
ferential in understaffing for each hospital. We calculated the 
total difference in understaffing as 24.5.

To determine how many shifts of understaffing are elimi
nated by each subsequent travel nurse addition, we take the 
conservative approach of assuming that new nurses will be 
assigned to all the currently understaffed shifts at their 
assigned hospitals. For example, if Methodist Hospital’s night 
shift was understaffed by one shift on 5/21, two shifts on 
5/29, and three shifts on 6/14 and if a new travel nurse was 
assigned to the Methodist night shift, then the total under
staffing for the pilot would be reduced by three shifts, result
ing in understaffing of zero shifts on 5/21, one shift on 5/29, 
and two shifts on 6/14. We continue adding nurses to the 
pilot hospitals until the total amount of understaffing is the 
same as the total understaffing during the Delta Coverage 
pilot. We add nurses to hospitals in two ways as described in 

the following paragraphs. We then count the number of 
nurses who were added to hospitals counterfactually to 
obtain the estimate of the number of nurses required to 
achieve the same understaffing as the 10 DC nurses.

F.1.4.1. “Crystal Ball” (Very Conservative). In this ideal 
situation, we assume that IUH has precise foreknowledge of 
the days, hospitals, and shifts that will experience under
staffing. We then assign each subsequent non-DC nurse to 
the hospital, and we shift to achieve the maximum reduction 
in understaffing over the course of the pilot: that is, the hos
pital/shift-type combination (day versus night shift) that 
has the most days of understaffing given the current staffing 
situation. Once a nurse is assigned to a hospital/shift type, 
we reduce the understaffing on each understaffed day by 
one to simulate the nurse working all of the understaffed 
shifts in that hospital/shift type. After reducing the under
staffing, we then find the next hospital/shift-type combina
tion that has the most understaffed days, and we continue to 
add nurses until the total understaffing during the pilot is 
the same as that of the actual DC nurse pilot. Under this 
assumption, we retrospectively calculate the number of 
non-DC nurses required to eliminate these understaffed 
shifts. The result indicates that even if we were able to fore
see the future, 16 non-DC nurses would be needed to 
achieve the same level of understaffing as the 10 DC nurses 
in our pilot.

F.1.4.2. More Realistic (Slightly Conservative). In this 
more realistic hospital/shift-type assignment method, to cal
culate the number of additional travel nurses required to 
achieve the same level of understaffing, we use the following 
procedure. Given that there is a desire to balance new hires 
across the main hospitals and shifts (day/night), we add new 
travel nurses to hospitals and shift types in an order that 
maintains a balance between the number of additional nurses 
assigned to each hospital/shift type. For example, suppose 
Methodist Hospital currently has no additional (counterfac
tual) night-shift nurses currently assigned, whereas all other 
hospitals have at least one. To balance the number of addi
tional nurses assigned to each hospital, the next counterfac
tual nurse will be assigned to the Methodist night shift. Ties 
are broken randomly. The result of this analysis demonstrates 
that IUH would have to have hired 19 additional non-DC 
nurses to achieve the same level of understaffing that was 
achieved by the 10 DC nurses in our pilot. In terms of produc
tivity, this implies that a Delta Coverage nurse is the equiva
lent of 1.9 travel nurses and also has the benefit of being 
familiar with the hospitals and care teams.

F.1.5. Overstaffing. On the other side of the staffing mis
match, consider overstaffing. Although hiring additional 
nurses can never decrease overstaffing, we show that our 
Delta Coverage program significantly mitigates the increase in 
overstaffing from additional hires. Consider again the sce
nario where travel nurses were hired instead of Delta Cover
age nurses. First, note that incidents of overstaffing when 
travel nurses are on shift are particularly undesirable. Travel 
nurses cannot be low censused (i.e., the nurse is sent home if 
not needed) and must be paid for a full shift regardless of 
need. This results in excessive and unnecessary costs given 
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the high salaries that travel nurses command, and it often 
results in full-time nurses being sent home instead. This high
lights another major benefit of the Delta Coverage program; 
comparing the overstaffing associated with hiring travel 
nurses versus Delta Coverage nurses, we find that the DC 
program has significantly lower overstaffing during the 
course of the pilot. Specifically, there were 29 fewer shifts in 
which overstaffing occurred during the pilot compared with 
the number of overstaffed shifts that would have occurred if 
travel nurses had been hired instead of Delta Coverage 
nurses, which projects to 289 fewer overstaffed shifts a year 
and a 43% smaller increase in overstaffing relative to having 
hired non-DC nurses instead.

F.2. Delta Coverage Nurse Work Variety, Stability, 
and Equity
To measure equity in terms of how Delta Coverage nurses are 
used in the program, we measure the proportion of time 
(shifts) that each nurse spends at a remote facility. Of interest 
is that (1) each Delta Coverage nurse has a sufficient variety 
of working locations; this is based on the feedback from these 
nurses that one of the reasons they joined the program is that 
they want to travel, but they also want the stability of work
ing in their home hospitals. Additionally, (2) Delta Coverage 
nurses should have a similar amount of variety in their work
ing locations to ensure that the travel regime is fair to all these 
nurses.

Figure F.1 provides a high-level visual summary of Delta 
Coverage nurses’ work schedules. For the 10 individual 
nurses participating the six-week pilot, Figure F.1 shows the 
percentage of shifts that each worked at various hospitals. 
Some nurses worked in a pod of three hospitals, and others 
worked in a pod of two hospitals.

In general, we see a pattern that shows that the nurses have 
fairly similar distributions of work locations (we compare 
nurses in three-hospital pods separately from nurses in two- 
hospital pods). Recall that we do not need the shifts to be 
evenly distributed among hospitals but rather, that all nurses 
have a similar distribution of shifts across hospitals. As a final 
note, Nurse 10 was certified in one of three acuity levels, 
which somewhat restricted that nurse’s transfer capability.

Additionally, we capture (1) the variety of opportunity 
(whether the nurses worked at each hospital often enough to 
earn a travel premium), (2) the stability of each nurse’s sched
ule from week to week, and (3) the equity among Delta Cov
erage nurses for measures (1) and (2). We summarize these 
metrics in Table 1. We now explain more details about the cal
culation of these metrics. To measure work variety and 
equity, we use the Gini coefficient, which is commonly used as 
a measure of dispersion in many fields. The Gini coefficient 
lies between zero and one, with zero representing perfect 
equality and one representing perfect inequality. In our con
text, a Gini coefficient of zero in terms of work variety means 
that the nurses spend an equal amount of time at each hospi
tal in their catchment area. Similarly, if the nurse spends time 
in only one hospital, the Gini coefficient would be one. We do 
not set a target on work variety but rather, a target such that 
all the nurses have similar work variety because traveling to 
different hospitals is the only difference between a DC nurse 
and a resource nurse.

When discussing equity in the subsequent paragraphs, a 
general rule of thumb is that a Gini coefficient of 0.3–0.4 is 
considered fair and that a Gini coefficient of 0.2–0.3 is consid
ered very fair. With respect to equity between nurses, a smal
ler Gini coefficient means that an individual nurse’s work 
variety and schedule stability are close to each other, indicat
ing a fair implementation of the program. We use this inter
pretation of the Gini coefficient to evaluate our metrics as 
well. To measure stability, we calculate the coefficient of vari
ation (CV) of each nurse’s work variety from week to week. 
Specifically, we calculate the number of different hospitals at 
which each nurse worked in a week. We then calculate the 
mean and standard deviation of the weekly number of differ
ent hospitals worked across the five weeks and divide the 
standard deviation by the mean to obtain the CV.

F.2.1. Work Variety and Equity. Work variety is measured 
at the individual level by obtaining one Gini coefficient for 
each individual for the measurement period (May to June). 
The average work variety (mean of the Gini coefficient) across 
all Delta Coverage nurses is 0.42. Note that Nurse 10 was cer
tified in only one acuity and thus, could not fill all nursing 

Figure F.1. (Color online) The Pie Charts Show the Fraction of Shifts Worked at Each Nurse Location for the 10 Delta Coverage 
Nurses 
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roles. Thus, we remove this nurse when calculating the equity 
in work variety. After doing so, the equity in work variety 
measured across Delta Coverage nurses has a Gini coefficient 
of 0.3, which is very fair.

F.2.2. Schedule Stability and Equity. To measure the sta
bility of a Delta Coverage nurse’s schedule, we calculate the 
variability in work variety from week to week. Quantita
tively, for each nurse, we first calculate work variety for each 
week using the Gini method. Next, for each nurse, we calcu
late the CV of that nurse’s work variety over the six-week 
horizon in the pilot. The CV is the standard deviation of work 
variety over the course of the pilot divided by the mean, 
which is a common normalized measure of variability. The 
smaller the CV, the less variable the nurse’s work variety is. 
We adopt the convention that CV< 1 is considered to be low 
variability and that CV> 1 is considered to be high variability. 
Considering all nurses, the average CV of work variety is 
0.41, and the equity (the Gini coefficient of the CV) is 0.31, 
indicating that the program is creating schedules that are sta
ble, consistent, and fair across Delta Coverage nurses.

F.2.3. Delta Coverage Hospital Equity. To measure the 
fairness of the allocation of Delta Coverage nurses to hospitals, 
we again use the Gini coefficient. After removing the single 
outlier hospital (Bloomington Hospital (BTN)), which main
tains the concept of fairness because BTN was well staffed dur
ing the pilot period, the Gini coefficient was 0.29, indicating a 
very fair allocation.

In summary, the previous analyses have demonstrated that 
the pilot not only achieved significant reductions in under
staffing and overstaffing but also created nurse schedules 
and allocated Delta Coverage resources in a desirable and 
equitable manner.

F.3. Practical Challenges Encountered in the Pilot and 
Lessons Learned
F.3.1. Nursing Crisis. The greatest challenge to the Delta 
Coverage program was, ironically, the primary impetus for the 
program itself: the nursing shortage crisis. By October 2021, we 
had a fully functional prototype of the dashboard, which we 
completed testing in April 2022. However, the pilot launch 
was delayed until May 2023 because of the unprecedented 
severity and duration of the nursing shortage crisis in Indiana. 
During this period, the National Guard had to be called in mul
tiple times to support hospital staffing across the state.

Although the delay in the pilot launch seemed ironic, it is 
crucial to recognize that the crisis highlighted the urgent 
need for innovative solutions, like the Delta Coverage pro
gram. The gap between the prototype development and the 
pilot launch provided the opportunity for us to refine and 
strengthen the supporting analytics theory. Additionally, 
the DC analytics suite proved its value during the crisis, pro
viding critical insights and support to IUH in managing the 
nursing shortage at its hospitals. This demonstrated the 
suite’s versatility and effectiveness, even in addressing chal
lenges beyond the DC program’s original scope.

Despite the challenges posed by the nursing shortage 
crisis, the collaboration between the academic team and 
IUH remained strong. The continuous communication and 
development efforts allowed us to further enhance the DC 

program’s capabilities and ensure its readiness for the pilot. 
The experience gained during the crisis response has 
enriched our understanding of the healthcare environment 
and reaffirmed the value and potential impact of the Delta 
Coverage program in effectively managing nurse shortages 
in the future. In January 2023, the team decided to restart 
planning for the pilot launch, focusing on two major mile
stones: (1) relaunching and retesting the analytics suite and 
(2) recruiting nurses for the Delta Coverage program.

F.3.2. DC Analytics Suite. When we began the relaunch, 
we encountered several changes in the underlying data sys
tems, including modifications to enterprise data systems that 
impacted our data pipeline, acuity reclassification in differ
ent units, and the second-largest hospital at IUH not yet rein
tegrated into the central data warehouse after relocating to 
a new building. Despite identifying and addressing these 
issues, the forecast and optimization continued to perform 
well after a year of dormancy. Another significant data 
challenge we faced, common to many hospitals developing 
data-driven operational analytics, was that hospital data are 
primarily designed for billing and finance. This required us 
to implement major work-arounds to ensure accurate opera
tional conclusions. For example, we had to use patient loca
tion data (the location at which the patient is billed) to 
construct hospital occupancy data. However, we discovered 
a double-counting issue; numerous patients were mistakenly 
counted in two places because the inpatient beds were being 
held for them while they were in surgery or recovery rooms. 
Our team addressed these challenges through advanced 
planning, anticipating future transfers in the hospital, and 
incorporating an automated change detection mechanism.

F.3.3. Recruitment. As we mentioned, one of the major 
challenges and milestones was recruiting nurses for this 
novel program. This involved both ingenuity and due dili
gence from the nursing organization management as well as 
scenario testing and operational design using the analytics 
engine. Despite the well-planned and well-executed iterative 
design process, we were unable to recruit a sufficient num
ber of qualified nurses on our first attempt. In the subsequent 
redesign, we were able to use the tunable model hyperpara
meters to include additional desirable features that various 
nursing teams mentioned in a second iterative process. 
This involved identifying different design specifications that 
would make the program more attractive to DC nurses and 
features that ensured fairness among hospitals and among 
DC nurses. Another feedback mechanism involved running 
information sessions for DC-eligible nurses. Other design 
changes tested in the analytics suite included partitioning 
the network into smaller travel zones (or pods), each with its 
own set of DC nurses; enforcing limits on the probabilities 
that a nurse would be deployed from the on-call list; adjust
ing the length of travel secondments (the number of shifts 
a Delta Coverage nurse works at a remote location); limit
ing the fraction of shifts that a DC nurse works at a remote 
hospital; and ensuring that the fraction of DC shifts allo
cated to each participating hospital was fair. The second 
wave of recruitment proved to be a success thanks to the 
implementation of design changes tested in the analyt
ics suite.
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