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Abstract. Amidst critical levels of nurse shortages, we partnered with Indiana University
Health (IUH) to pioneer a novel suite of advanced data and decision analytics to support a
new model of nurse staffing. This statewide program leverages a flexible pool of resource
nurses who can move between the 16 IUH hospitals located in five diverse regions and
serving more than 1.4 million residents. This program breaks the mold of traditional travel
and resource nurses by adding flexibility to move nurses between hospitals to dynamically
respond to short-term patient census fluctuations. This paradigm shift necessitated the
development of analytics to execute these interhospital transfers. Specifically, we develop
analytics to create a two-week advance on-call list for travel and a 24- to 48-hour call-in
decision. Our Delta Coverage Analytics Suite was launched in October 2021 as a Microsoft
PowerBI application and provides an integrated solution that has supported and continues
to support this new staffing approach at a statewide scale. The suite contrasts with existing
nurse scheduling tools that primarily cater to single hospitals or units. It incorporates (1) a
novel patient census forecast based on a deep generative model capturing complex spatial-
temporal correlations and avoiding error accumulation occurring in traditional time-series
models and (2) a stochastic optimization that prescribes optimal on-call and deployment
decisions. The pilot, conducted from May to June 2023, produced a remarkable reduction
in understaffing, with estimated annual savings of $2.5 million to IUH and over $1.5 billion
on a national scale compared with the conventional solution of hiring travel nurses. As the
first program of its kind, our methods establish new benchmarks for evidence-based and
data-driven nurse workforce management with the potential to transform how healthcare
institutions approach the national nursing shortage crisis.

History: This paper has been accepted for the INFORMS Journal on Applied Analytics Special Issue—2023
Daniel H. Wagner Prize for Excellence in the Practice of Advanced Analytics and Operations
Research.
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Introduction

DC program, to the best of our knowledge, is the first
implemented statewide program that utilizes a flexible

The decades-long nurse shortage crisis has elevated to
the level of global health emergency, with the United
States projected to face a deficit of half a million nurses
by 2030 and annual burnout and turnover rates exceed-
ing 20%. The accelerating shortage of nurses combined
with large spikes in demand has prompted hospitals
and health systems to explore innovative solutions for
both the short term and the long term. This paper pre-
sents one such innovation that was codeveloped and
successfully implemented in partnership with Indiana
University Health (IUH): the Delta Coverage (DC)
internal travel nursing program. As the largest health-
care system in Indiana with 16 hospitals and over 9,000
nurses, IUH serves over 1.4 million residents across
five diverse regions spanning 14,000 square miles. The
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pool of full-time resource nurses capable of providing
care in multiple hospitals and adjusting their work
location on short notice in response to understaffing. In
contrast to typical travel nursing arrangements with
12-week contracts, the DC program executes short-
term deployments on the scale of days rather than
months to dynamically respond to geographic and
temporal fluctuations in hospital occupancies. Figure 1
shows the implemented DC network design and [UH’s
catchment area, which highlight its statewide coverage.

Our collaborative efforts led to the development of
the Delta Coverage Analytics Suite, a comprehensive
solution and implementation that leverages state-of-
the-art predictive and prescriptive analytics, without


mailto:helmj@iu.edu
https://orcid.org/0000-0001-5577-5530
mailto:shi178@purdue.edu
https://orcid.org/0000-0003-0905-7858
mailto:mdrewes@iuhealth.org
mailto:jcecil2@iuhealth.org
https://doi.org/10.1287/inte.2024.0140

Downloaded from informs.org by [139.179.182.186] on 14 October 2025, at 11:38 . For personal use only, al rights reserved.

Helm et al.: Delta Coverage: Analytics Journey for a Novel Nurse Deployment Program
432 INFORMS Journal on Applied Analytics, 2024, vol. 54, no. 5, pp. 431-454, © 2024 INFORMS

Figure 1. (Color online) The DC Network Design Consists of
Three Pods and Spans 180 by 80 Miles
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Notes. The squares are IUH hospitals, the circles indicate the six pilot
hospitals, and the ellipses are DC pods. DC nurses can be deployed
to any hospital within their pod. IU, Indiana University.

which the DC program would not have been feasible.
The DC analytics suite dynamically optimizes nurse
deployment and staffing on a multiple-hospital scale in
contrast with off-the-shelf nurse scheduling analytics,

which usually target individual units or hospitals and
do not require multiple-day advanced notice prior to
reassigning nurses. The distinctive dynamics and com-
plexities of real-time nurse deployment over a large
network make it difficult for existing solutions to gain
traction in the nursing market, presenting an opportu-
nity for our DC analytics suite to make a significant
step forward in addressing the nurse staffing crisis.

Implementation and Impact

Launched in October 2021, the analytics suite under-
went three phases of implementation. The upper panel
of Table 1 summarizes key performance indicators
extrapolated to annual estimates from the pilot (the last
phase), which ran from May to June 2023 for six weeks.
The left half of this upper panel (“Direct impact”)
shows the overall impact of the DC program versus a
counterfactual that mimics hiring the same number of
non-DC nurses (non-DC), such as travel nurses. The
right half shows the “Marginal impact” (additional
benefit) of the DC program over the non-DC counter-
factual. Our pilot showed significant results: a 17%
reduction in understaffing, equating to a projected 340
fewer incidents of understaffed shifts annually. This
was made possible by moving 10 DC nurses among six
hospitals participating in this initial pilot. This com-
pares with a 4% reduction in understaffing (90 fewer
shifts annually) when hiring 10 non-DC nurses. That is,
for each understaffed shift eliminated by a non-DC
nurse, a DC nurse can mitigate 340/90=3.7 under-
staffed shifts.

Further analysis of the pilot indicates significant
increases in nursing productivity: to achieve the same
understaffing mitigation as provided by the 10 DC
nurses, IUH would have needed to hire at least 16-19

Table 1. The Performance of the Delta Coverage Pilot from May 2023 to June 2023

Direct impact

Marginal impact

Understaff Understaff Understaff Overstaff

Reduction (DC) (non-DC) vs. non-DC vs. non-DC
Annualized shifts 340 90 250 290
Improvement, % 17 4 13 43

Work variety Sched Hospital DC

(Gini) stability (CV) shifts used, %

Average 0.36 0.3° 19

Equity 0.3° 0.31 0.29°

Notes. The upper panel shows the system-wide value of the DC program. We compare the annual number
and percentage reduction in overstaffing and understaffing with the scenario of hiring the same number of
non-DC nurses. The lower panel shows the average value and equity score across all DC nurses and
hospitals. “Work variety” and “Hospital DC shifts used” are measured by the Gini coefficient. “Schedule
stability” is measured via the coefficient of variation (CV). See Appendix F for details of the calculation of
these metrics.

?A smaller value is better, with < 0.5 being very stable.

P A value of < 0.3 is generally considered very equitable.
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non-DC (either regular or traveler) nurses over the six-
week horizon, assuming that IUH staff could predict
precisely when and where understaffing would occur
in each hospital over the six-week period. In a more
realistic scenario, this estimate could rise to hiring 19
non-DC nurses; see Appendix F.1 for details. Therefore,
one DC nurse is equivalent to 1.9 non-DC nurses in
addressing understaffing.

This significant productivity gain is attributed to the
flexibility of DC nurses who can be deployed to differ-
ent hospitals, whereas non-DC nurses must be hired
for a specific hospital. To illustrate, consider a scenario
in which one hospital experiences understaffing during
the first half of a week but in which another hospital
faces understaffing during the second half. A single DC
nurse can cover both hospitals, whereas the traditional
approach would require hiring two additional nurses,
one for each hospital. Meanwhile, the hiring of 10 DC
nurses led to 43% fewer overstaffed shifts compared
with hiring 10 non-DC nurses (290 fewer shifts per
year). Note that the improvement would be even more
significant if we accounted for the rigid 12-week con-
tracts of travel nurses. For example, if a hospital experi-
ences understaffing for only the first six weeks, the
contract cannot be canceled, leading to overstaffing in
the remaining six weeks. In other words, the DC pro-
gram achieves “pooling” effects both geographically
and temporally. In addition to the efficiencies gener-
ated by the DC program, the final allocation of DC
nurses is considered to be fair to participating hospitals
and nurses. See the lower panel of Table 1 for a sum-
mary, and see additional discussion in the Equity and
Adoptability section.

The deliberate decision to limit the initial pilot’s
scope stemmed from the inherent uncertainty associ-
ated with this new staffing method. The size of the
pilot, 10 DC nurses, was chosen based on the bud-
get allocated to the pilot. Hiring 10 new nurses requires
significant expenditure, and management determined
that 10 hires provided an appropriate balance of proof
of value and risk. Although the 10-nurse pilot may
seem modest in scale, it was instrumental in validating
our approach. Moreover, after this pilot’s success, we
are actively expanding the program to include the
entire cohort of 300 resource nurses at IUH in the DC
program. Our analytics suite has undergone compre-
hensive testing, and it is fully prepared to operate at
this more significant scale.

Paradigm Shift

Historically, the idea of relocating nurses between hos-
pitals has encountered skepticism and substantial logis-
tical and cultural barriers. Although resource pooling
is a well-known concept for improving efficiency in
various industries, applying it to highly skilled medical
professionals is a far more complex endeavor than

pooling products and materials. At first glance, our
pilot, which moves 10 nurses between hospitals, may
appear to be a modest step. However, it represents a
reshaping of traditional staffing paradigms that rely
heavily on travel nurses. The core value of this pilot is
its role as a proof of concept of an innovative solution
that has the potential to revolutionize nursing practices
and address a global crisis.

To elaborate, the DC program and analytics suite
provides an alternative to the conventional response to
shortages: hiring costly travel nurses. In contrast to DC
nurses who can move between hospitals daily, travel
nurses are typically hired on 12-week contracts with the
same hospital and hence, provide at most the value of a
traditional resource nurse. Although travel nurses can
technically move to different hospitals after 12 weeks,
they are unable to respond to the short-term fluctua-
tions in nurse demand (one day to 3 weeks) that the DC
nurses are designed to cover. In addition, if a travel
nurse is not needed for the entire 12 weeks, that nurse
still must stay on staff, resulting in unnecessary costs or
sometimes having to send one less expensive, full-time
nurse home when the hospital is overstaffed.

In contrast, our pilot demonstrates the feasibility of
relocating nurses between hospitals without causing
disruptions in hospital culture. Unlike travel nurses,
who often lack familiarity with hospital teams and pro-
cesses, DC nurses are IUH employees and thus, are
part of the culture, seamlessly integrating into care
teams across multiple hospitals. More importantly, the
DC program delivers significant cost savings because
of the lower cost of DC nurses and the “pooling”
effects; hiring 10 DC nurses costs approximately 10 x
$2,698 = $26,980 per week based on an estimated 75%
hire compensation versus a full-time unit-based nurse.
Hiring 10 DC nurses is equivalent to hiring 19 travel
nurses as discussed. Travel nurse salaries have easily
exceeded $4,000 per week since the pandemic. There-
fore, 19 travel nurses would cost IUH at least $76,000
per week. This corresponds to $2.5 million annual sav-
ings, even at the pilot scale.

Staffing costs have always been a significant portion
of hospital budgets, and these expenses have surged,
particularly since the pandemic, with travel nursing
being a major cost driver (American Hospital Associa-
tion 2022). This unsustainable financial strain will even-
tually translate into higher cost burdens for patients, the
healthcare system, and taxpayers. Within this context,
the potential impact of our DC program is profound;
more than 4,000 hospitals (67%) in the United States are
associated with 626 health systems (Furukawa et al.
2020). If each of the 600+ health systems was to employ
10 DC nurses and the DC analytics suite, the national
impact would exceed $1.5 billion dollars annually.
Therefore, the significance of the DC implementation
extends far beyond our initial pilot. Its success marks a
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turning point in the way that healthcare institutions
manage their nursing workforce, moving beyond the
inefficient yet previously unavoidable practice of heavy
reliance on travel nurses. Unlike innovations in inven-
tory or supply chain management, which deal with
goods or machines, our experiment is distinctly human
centered. The complex nature of the healthcare industry,
coupled with its deeply ingrained resistance to change,
made convincing a hospital system to embrace this new
practice initially seem nearly impossible. Now, this
demonstration of value serves as an invitation for other
healthcare providers to adopt similarly innovative solu-
tions to meet the urgent demands of the healthcare and
nursing industries. Notably, the achievement resulting
from our collaboration with IUH nursing is not merely
an enhancement of existing practices through analytics;
rather, it leverages analytics to create an entirely new
approach to nurse staffing that expands the boundaries
of traditional practice.

Criticality of Operations Research Support

The concept behind Delta Coverage is to allow highly
skilled nurses to float and work in multiple units,
including units in other hospitals in the network. The
ultimate goal is to move the right number of nurses to
the right unit at the right time in order to respond rap-
idly to fluctuations in staff and occupancy across hospi-
tals. Unlike programs for traditional resource nurses,
who usually float between units within an individual
hospital and receive their assignments less than
24 hours before a shift, Delta Coverage requires sophis-
ticated advanced planning that utilizes (1) predictive
analytics to forecast occupancies for all 16 [IUH hospi-
tals and (2) prescriptive analytics to determine optimal
on-call and call-in decisions for DC nurse transfers. To
meet this critical need, our team developed a first-of-
its-kind analytics suite, seamlessly integrating state-of-
the-art machine learning-based time-series predictions

for component (1) and a new generative model-based
stochastic optimization (SO) for component (2). Figure 2
provides a close-up view of the decision support for
the two stages of decisions, with the “Plan” (the right
panel of Figure 2) indicating how many nurses should
be put on call to travel one to two weeks in advance (for
example, from the Indianapolis Suburban Region to the
Academic Health Center region in 10days) and the
“Execution” (the left panel of Figure 2) showing how
many nurses should be called in for travel 2448 hours
in advance (for example, from Methodist Hospital to
University Hospital the next day).

Our pilot program underscores the critical role of our
operations research (OR)-based analytical solution in
ensuring the success of this innovative practice, espe-
cially in a setting where this approach significantly
departs from traditional practices and initially faced
skepticism and resistance. Our analysis demonstrates
that without following the prescriptive guidelines pro-
vided by the OR solution, the potential benefits would
be significantly diminished. Before the pilot started, DC
nurse movements were initially managed without the
DC analytics suite for a few weeks. During this trial
period, the DC program reduced understaffing by only
1.2% and overstaffing by 0.15%. In contrast, if the corre-
sponding decision support system (DSS) recommenda-
tions had been followed (extracted from the back-end
database), understaffing could have been reduced by
9.4%, and overstaffing could have been reduced by
2.4%. Without the support of the analytics suite, the
entire innovation could have potentially been jeopar-
dized because of marginal performance. The OR-driven
decision-making process, rooted in data-driven insights,
is the cornerstone of our program’s success. It not only
enables efficient nurse deployment but also optimizes
resource allocation. This exemplifies the significant
value of combining advanced analytics with OR to
address pressing challenges.

Figure 2. (Color online) The Graphic Shows a Snapshot of the DC Dashboard Decision Support
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Figure 3. (Color online) The Pie Charts Show the Fraction of DC Shifts Allocated to Each Hospital by Week Weighted by

Hospital Size
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Equity and Adoptability
The reduction in understaffing achieved through our
DC program has long-term societal benefits, including
improved patient care, increased professional satisfac-
tion among bedside nurses, and ultimately, lives saved
(Blegen et al. 2011, Aiken et al. 2014). The long-term
impact of broader deployment of our DC program on
the nursing crisis is significant given that our novel sys-
tem directly addresses the primary cause of the nursing
crisis—nurses leaving the profession because of the
pervasive issue of understaffing (Flinkman et al. 2010).
The pilot also demonstrates the desirable fairness
feature of our DC analytics suite, benefiting both the
DC nurses and participating hospitals, as evidenced by
the “Equity” row in Table 1. This crucial aspect ensures
the sustainability and wider adoption of the program,
making it also applicable to other hospitals nationwide
that are facing similar challenges. In particular, one
significant concern voiced by chief nursing officers
(CNOs) of some IUH hospitals was that the urban hos-
pitals may potentially be allocated most or all of the
DC nurses, taking resources away from more rural hos-
pitals without giving any resources back. However, the
implementation shows promising results for the hospi-
tals located in more rural communities. Figure 3 pro-
vides a visual representation of the distribution of
Delta Coverage resources among participating hospi-
tals (shown in the map in Figure 4). Figure 3 illustrates
that despite week-to-week fluctuations, the decisions
made by the optimization engine and implemented by
the DC manager result in a fair and equitable allocation
of DC nurses across the participating hospitals, notably
benefiting Arnett Hospital and Ball Memorial Hospital,
the two most rural hospitals in the pilot. See Appendix F
for a comprehensive analysis of the pilot program’s
performance.
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To summarize, the success of our pilot highlights the
feasibility and benefits of internal travel nurse pro-
grams as an alternative solution for managing nurse
shortages and optimizing workforce allocation, instead
of solely relying on travel nursing. It introduces a
new paradigm characterized by data-driven, analytics-

Figure 4. (Color online) The Graphic Shows a Map of the DC
Hospitals
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based decision making. It also has the potential for a
far-reaching impact in the long run. This approach pro-
motes workforce stability and a supportive environ-
ment, resulting in a more resilient and satisfied nursing
workforce. Moreover, our analysis shows that the DC
program’s benefits extend to rural and marginalized
areas that often bear the brunt of nursing shortages
(because rural hospitals face more challenges in attract-
ing and retaining nurses because of their remote loca-
tions), disproportionately affecting access to quality
healthcare and population health outcomes in these
areas. Our solution can effectively enhance treatment
accessibility in underserved regions. The success of the
program in promoting both workforce stability and
equitable distribution of nurses exemplifies the trans-
formative power of analytics-based OR solutions.

Paper Organization

In the remainder of this paper, we detail our three-
year journey of development and implementation. In
the section Delta Coverage Analytics Suite Details and
Challenges, we present an overview of our outline, the
challenges encountered, and our main contributions,
which provide the road map for subsequent sections.
To overcome the technical challenges, we first describe
the novel multiple-hospital and multiple-unit nursing
demand forecast based on a deep generative model in
the section Generative Modeling to Predict Correlated
Hospital Occupancies. We then introduce in the sec-
tion Stochastic Optimization for Network Decision
Making the prescriptive framework based on the sto-
chastic optimization. In the section Integration of
Predictive and Prescriptive Components, we discuss
the seamless integration of forecast and optimization;
the generative model structure perfectly complements
our quasi-Monte Carlo (quasi-MC) approach to over-
come the curse of dimensionality in our large-scale
decision optimization, which is critical because it must
be solved daily even with limited computational
resources. In the section Implementation of Delta Cov-
erage and Practical Challenges, we discuss the journey
to launch the pilot implementation, including our
tiered approach to build trust for deploying OR ana-
lytics for operational improvement. We conclude this
paper with ongoing work in the Conclusion section.

Delta Coverage Analytics Suite Details

and Challenges

Our analytics suite was implemented in three phases
from October 2021 to June 2023 as a Microsoft PowerBI
application: (1) live testing from October 2021 to April
2022, (2) program redesign and refinement with the
leadership team from May 2022 to April 2023, and (3)
pilot with end-user adoption from May 2023 to June
2023. The implemented analytics suite is fully integrated

with IUH’s data warehouse and staffing data systems,
and the suite runs the following procedures on a daily
basis.

1. On Monday, based on the demand forecast,
scheduled nurses at each hospital, and available Delta
Coverage resource nurses, determine the on-call list
for a one-week period two weeks in advance (21 days
ahead).

2. Each day at 4 a.m., update the patient census data
and forecasts, and determine actual deployment deci-
sions for the following day (24 hours later).

3. Load output into the Microsoft PowerBI dash-

board to support decision making. The results of
the previous day’s actions (deployment, census, and
updated census prediction) are recorded for program
evaluation and control charting to monitor ongoing
system accuracy.
Figure 5 provides a schematic of the DC analytics
suite design. The data required include the number
of unit nurses and resource nurses scheduled at each
hospital over the three-week planning horizon, the
number of DC nurses scheduled for each day of the
planning horizon, the current census at each hospital,
and the history of patient movement over the past
30-60 days (to calculate arrival, discharge, and trans-
fer rates that are used in creating the forecast). More
details of the data and system functionality are pro-
vided in Appendix E.

Challenges

Given the goal of providing one to two weeks of notice
to nurses who will be put on call to travel and 24 to
48 hours of notice on whether a nurse will be called in,
decisions must be made without full information sur-
rounding nursing supply and demand. This required
both accurate nurse demand forecasts across the 16
hospitals over multiple days as well as dynamic deci-
sions that consider complex spatial-temporal demand
correlations while accommodating nurse preference
and availability. However, these models come with sig-
nificant technical challenges because of hard-to-predict
occupancy fluctuations and multiple shift rotations that
introduce additional correlations, influencing the deci-
sions throughout the network.

The primary challenge lies in capturing the compli-
cated spatial-temporal correlations in patient census
at different hospitals over the next 21days. As a
most obvious example of why correlation is impor-
tant, consider an infectious disease outbreak, where
the underlying disease spread drives hospitalizations
over different regions. Even without a major public
health event, weather, hospital diversions, and patient
transfers among units/hospitals create complex non-
linear correlations between hospitals. In our case, the
decision structure that manages the transfer of nurses
between hospitals complicates the system further, which
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Figure 5. (Color online) The Schematic Details the Delta Coverage Decision Support Input Data and Workflow
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contrasts with typical nurse staffing with newsvendor-
type models because (1) traveling to remote hospitals
requires deployed nurses to stay there for multiple
days (“secondment”), which makes decisions critically
depend on correlated census patterns over multiple
days, and because (2) the DC nurse pool is shared
across 16 hospitals, forcing the decision framework to
also account for spatial correlations. Hence, nurse
staffing in such a large-scale hospital network requires
accounting for spatial-temporal correlations from both
the predictive and prescriptive components.

Beyond the technical challenges, we also faced
numerous practical obstacles. Penetrating the nursing
industry with innovative practice and OR analytics
has been exceptionally challenging as we discussed
in the Introduction section. Convincing the industry
to embrace a significantly different staffing model re-
quires substantial evidence of its efficacy and benefits.
Yet, off-the-shelf nurse scheduling analytics usually
target individual units or hospitals, whereas other
hospital analytics prioritize physicians and patients,
often overlooking the distinctive dynamics and com-
plexities of nursing. These challenges make it difficult
for analytics solutions to gain trust to establish a
strong foothold. We further discuss challenges during
the implementation in Appendix F.

Literature Review
We review two main streams of literature that relate to
the predictive and prescriptive components of our work.

Time-Series Forecast
Traditional time-series forecast tools, like autoregres-
sive models or queueing-based simulations, rely on

parametric assumptions, such as linear dependence or
Poisson arrival processes. However, these models lack
flexibility in handling highly time-varying dynamics
and complex nonlinear correlations. On the other hand,
typical machine learning prediction models often pro-
vide point estimates rather than the needed distribution
for decision making under uncertainties. Recent ad-
vancements in generative models, variational autoen-
coders (VAEs) and generative adversarial networks
(GANSs), have the advantage of providing distribu-
tions as the output. Time-series generative models
use GAN or VAE combined with recurrent neural
network (RNN); for example, see Mogren (2016), Este-
ban et al. (2017), and Desai et al. (2021). TimeGAN
(Timeseries Generative Adversarial Networks) (Yoon
et al. 2019), considered as the current state-of-the-art
method, combines autoregressive models with GANs
and aligns the latent representations of real and gener-
ated data. However, these generative models have one
primary limitation: learning stepwise conditional dis-
tributions that may accumulate errors and overlook
key temporal patterns essential for downstream tasks;
see more discussion in the section Generative Modeling
to Predict Correlated Hospital Occupancies. Moreover,
they often lack theoretical justification and interpret-
ability, and they fail to consider the structural insights
of realistic problems. In contrast, the predictive model
that we developed in this work effectively addresses
the error accumulation issue and is domain adapted.

Nurse Staffing and Deployment

Nurse scheduling is a topic that has been well studied
in the OR/MS (Medical/Surgical Unit) literature; for
example, see Saville et al. (2019) and Griffiths et al.
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(2020) for comprehensive reviews. Recent advances in
analytics have helped to incorporate predictive analyt-
ics into nurse scheduling; for example, see Zlotnik et al.
(2015), Ban and Rudin (2019), Spetz (2021), Anderson
et al. (2022), and Shi et al. (2023). These studies empha-
size the significant impact that sophisticated prediction
models can have on optimizing nurse staffing levels
and improving patient outcomes. The most relevant
paper to our work is by Hu et al. (2024), who used pre-
dicted patient demand to allow management to set
base and surge staffing levels in an emergency depart-
ment. It is important to highlight that this stream of lit-
erature has predominantly focused on staffing within
individual or hospital units, which operate on a much
smaller scale compared with our work. Consequently,
these studies usually do not consider complex spatial-
temporal correlations in patient demand, which are
crucial for making informed decisions in our research.
Additionally, a few studies have explored patient
transfers between hospitals motivated by emergent
practices during the pandemic, employing robust opti-
mization (Parker et al. 2020) and queueing-based fluid
approximation (Chan et al. 2021). We emphasize that
nurse transfer presents its own unique challenges com-
pared with patient or equipment transfer. For example,
nurses need to move back to home locations after being
transferred rather than being transferred again (in contrast
to equipment that can be continuously moved). In addi-
tion, we need to design efficient and scalable algorithms to
ensure practical implementations rather than treating the
problem solely as a mathematical optimization problem.

Contributions

To the best of our knowledge, this work represents a
novel implementation that leverages state-of-the-art
predictive and prescriptive analytics to optimize nurse
staffing in multiple hospitals and multiple units. Our
focus is on a statewide program that dynamically real-
locates nurses across a network, resulting in substantial
contributions to both theory and practice.

e Predictive innovation. We build a novel generative
modeling framework that captures the dependence
structure and the time dynamics among census, arrivals,
discharges, and underlying latent variables. We design
a temporal-based variational family based on patient-
flow dynamics along with customized encoder-decoder
structures for the learning. This both provides efficient
representations of the census time series and generates
distributional information for the decision optimization.
Comparing our methodology with general-purpose pre-
diction methods in the machine learning area, we inte-
grate domain knowledge by embedding the patient
flow dynamics into the VAE framework. This allows
our model to be interpretable, and more importantly, it
provides a doubly stochastic patient census process

structure for prescribing optimal decisions in the
decision-support phase.

e Prescriptive innovation. We formulate an SO pro-
gram to effectively capture essential trade-offs in our
nurse deployment program while considering realistic
implementation constraints. This SO integrates with the
predictive model, making it unique in the sense that the
demand is a doubly stochastic process in contrast with
a conventional SO setup. This brings new computa-
tional challenges for sample-based methods because
there are two layers of randomness. To efficiently solve
the SO, we transform the original large-scale problem
into a tractable linear program (LP) through a quasi-
Monte Carlo method for scenario generation. At the
heart of our technical innovation lies a seemingly com-
plex modeling structure: doubly stochastic processes
driven by multivariate Gaussian latent variables. This
structure not only enhances prediction accuracy but
also greatly facilitates the optimization via the feasibil-
ity of using a quasi-Monte Carlo method, seamlessly
integrating both prediction and optimization compo-
nents. This integrated design presents a methodological
contribution to the SO problem driven by doubly sto-
chastic processes, which is understudied in the litera-
ture and may spark independent technical interest.
Moreover, it presents a scalable solution that can be
readily implemented by our partner.

e Implementation. Unlike prior research that focused
on small-scale staffing optimization within individual
units or hospitals, our work extends beyond those
boundaries. We tackle the complex task of deploying
nurses between hospitals using decision analytics
across an entire state. As we discuss in the Paradigm
Shift section, our pilot program serves as a proof of
concept, demonstrating the feasibility and effectiveness
of this innovative practice, which initially faced skepti-
cism within the industry. Delta Coverage decision ana-
lytics offer an effective alternative to traditional travel
nursing, thus making a significant contribution to the
healthcare industry and broader society. Moreover, the
implementation of decision analytics in the tradition-
ally technology-resistant nursing industry represents
a paradigm shift toward a more data-driven and
evidence-based approach. This transition can foster a
culture of continuous improvement and innovation,
unlocking untapped potential and enabling informed
decision making.

Generative Modeling to Predict
Correlated Hospital Occupancies

To overcome challenges associated with existing time-
series forecasts, such as the lack of distributional infor-
mation and the lack of the flexibility to deal with
highly time-varying dynamics and nonlinear correla-
tions, we build a generative modeling framework.
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This framework is based on Li et al. (2024), in which
the authors developed a VAE method for temporal-
based generative model learning. We tailor and adapt
this framework to our specific hospital census predic-
tion setting. Our adaptation captures the dependence
structure and the time dynamics among the census,
arrivals, discharges, and sequence of underlying latent
variables. We specify this adapted generative model
framework first and then highlight its advantage over
existing methods.

Model Overview

Consider a time-series sequence {X;,f=0,1,..., T} with
the length of T+1, where X; € R* is a vector that corre-
sponds to the patient census (i.e., the number of patients)
on day f in k hospital units. We denote this time-series
census sequence as Xo.r for notational simplicity. Our
goal is to learn the joint distribution p(Xo.r). The hospital
census is driven by the daily number of arrivals A; and
daily discharges D,, which are further driven by some
underlying “environmental factors” modeled as latent
variables. The pandemic is an example; the latent vari-
ables correspond to the disease spread and recovery,
which drive the number of patients who will be hospital-
ized (arrivals) and how long they will need to be hospi-
talized (discharges). To capture this dependence, we use
the generative modeling framework from Li et al. (2024)
and tailor it to the hospital census setting. Specifically,
starting with X, =1x, the relationship of X;, X;_1, A;, D;
follows

Xi =X 1+A—Di+e, t=1,...,T, (1)

which captures the patient flow dynamics in hospitals—
today’s census equals yesterday’s census plus arrivals
and minus discharges—with some noise € ~ N(0, 7).
Note that the assumption for the normal distribution of
X/'s is motivated from the offered-load approximation
in queueing networks, which are commonly used to cap-
ture the distribution of customer count (census) in ser-
vice systems (Green et al. 2007). The sequences of {A;}
and {D;} are further driven by the latent sequences {Z{}
and {Z{}, respectively. The dependence between the
arrival or discharge sequence and the latent sequence
can be modeled via some stochastic differential equa-
tions (SDEs). As we elaborate, we do not directly learn
the arrivals or discharges, and thus, we leave the specifi-
cation of these SDE to Appendix B.

Cumulative-Difference Learning

A common way to learn the joint distribution of {X;}
via the generative modeling framework is through
stepwise learning: that is, learning the conditional dis-
tribution X;|Xo;_1 recursively for each day ¢. This
method has an issue: the potential accumulation of
errors. That is, for each time step ¢ < T, if we have a
highly inaccurate estimation for the census vector X, it

will cause the estimations for all the censuses from ¢ + 1
to time T to deviate significantly from the true values.
This is because in stepwise learning, the calculation of
the current day’s census is based on the previous day’s
census; for example, X; depends on X; ;. In other
words, the errors accumulate over time, and this could
lead to significant deviations from the “truth” for cen-
suses in the distant future.

To overcome this issue, we adopt the cumulative-
difference learning specified as follows. First, we use
Ay = Ay — Dy to denote the difference between arrival
and discharge variables A, and D,, respectively (i.e., the
net changes in X;’s). Then, we define a new variable
that captures the cumulative difference: I't = X; — Xo =
S Ai=Y"_(A;—D;). Here, T, is the cumulative
difference between the census on day t and the initial
census Xo=x;. From Equation (1), the relationship
between X, X;, and I'; can be characterized as

Xi=Xo+T+€, EtNN(O,Tt), t=1,...,T. (2)

This cumulative difference can be observed by y, =
Xt — xo (Which includes the noise) in the data, where we
use lowercase letters to denote the realized/observed
values. The noise term €, captures the measurement
errors, which are assumed to follow a multivariate nor-
mal distribution with zero mean and covariance ;.
Note that X; € R* is a multidimensional vector for the
census in each of the k locations: hence, the covariance
matrix 7; € R**_ The covariance matrix is time varying
because the noise €; for the cumulative difference
changes over time.

Following the literature on generative models, we
assume that the cumulative-difference sequence depends
on the sequence of latent variables {Z;} through a set of
stochastic difference equations I'y =T_1 +bi(Ai_1) +0¢
Zi, t=1,...,T with the initial condition 'y =Ag =ap
—dy. Here, Zy,...,Zx~N(0,1;) are independent and
identically distributed standard Gaussian vectors in
R, with the unknown parameters to be learned as
the drift functions b;(-), the diffusion matrix o,, and
the covariance matrix 7,. The SDE here can be seen as
a discrete-time version of the Cox-Ingersoll-Ross
(CIR) process.

VAE Learning Framework
To learn the unknown parameters, we maximize the
log likelihood of joint distribution p(y,.;):

10gP9(7/1;T) = log/PG(VLT|21:T)P(21:T)d21:T, 3)

where zi.7 = (z1,...,zr) denote the sequence of real-
ized latent (prior) variables sampled from the prior
distribution p(z1.1) ~ N(0,14), 1.0 ={yq,---,yr} is the
observed cumulative-difference sequence from data,
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and 6 represents parameters in the conditional distribu-
tion for y,.;|z1.7. The likelihood function is intractable
and hard to evaluate numerically. We adopt the VAE
framework for the learning task. At a high level, VAE
optimizes the evidence lower bound (ELBO) as the sur-
rogate objective, which contains two major components:
(1) learn the conditional distribution pg(y,|z1) via a
decoder f(-) with parameter 0, and (2) learn g4 (z1.7|y1.7),
which is the variational distribution parameterized with
fo(-) with parameter ¢ and approximates the true poste-
rior distribution. Part (1) is called the decoder because it
decodes the latent variables z;; to generate y;, whereas
the variational distribution in part (2) is called the
encoder because it encodes the observed y,, into the
latent space via the variational distribution q¢(z1.7|y;.7)-
We design a new temporal-based variational family
along with customized encoder-decoder structures for
the VAE. The complete details of the ELBO as well as
the design of the encoder and decoders are relegated to
Appendix B. Figure 6 characterizes the entire pipeline
for the training and generation procedure. To summa-
rize, we integrate domain knowledge by embedding the
patient flow dynamics into the VAE framework. This
allows our model to be interpretable, and importantly, it
also provides a doubly stochastic patient census process
structure for prescribing optimal decisions in the deci-
sion support phase.

Advantages over Other Machine Learning
Models and Numerical Performance

In addition to the domain-aware design with specific
patient-flow dynamics integrated within the learning,
our prediction model offers two other advantages over
conventional models. First, compared with traditional

time-series forecast models, such as Autoregressive
Integrated Moving Average, the encoder-decoder
structure provides great flexibility to represent com-
plex functional forms and allows for the easy addition
of useful auxiliary covariates, such as the day-of-week
or holiday indicators, to facilitate predictions. In par-
ticular, this flexible design enables the capture of
highly nonlinear and complex spatial-temporal corre-
lations that are difficult to model using conventional
statistical methods. This is achieved through the differ-
ence learning setup and the mapping from Z; to I';
(captured via the decoder fy). Specifically, I'; is corre-
lated with all previous I'1;_1 because of the latent vari-
ables Z1,, which also drive the correlations among all
locations. See Calatayud et al. (2023) for a similar idea
to capture the spatial-temporal correlations in crime
incidents without explicitly using the latent variables.

Second, by transforming the original census predic-
tion problem into learning the cumulative difference,
our method effectively avoids the error accumulation
issue associated with recursive prediction that is com-
monly found in time-series generative models, includ-
ing many state-of-the-art models, such as TimeGAN
(Yoon et al. 2019). Because I'; represents cumulative
differences, it only requires the initial value X, for pre-
dicting (reconstructing) X;, in contrast to the recursive
reconstruction method used in stepwise learning. That
is, the cumulative-difference mapping directly con-
nects Zq; to all I'1;4’s at once. Any bias present in the
reconstructed I'y_; will not impact I'; because it is
solely determined by the latent variables. See Figure 7
for a comparison with benchmark algorithms, show-
ing the advantage of our algorithm in addressing these
issues.

Figure 6. (Color online) The Schematic Details of the Architecture of DT-VAE with Its Training and Generation Procedure
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Notes. The DT-Encoder g, encodes input data to the latent space; the DT-Decoder pg generates data from encoder samples during training and
a prior distribution during generation. Cum. Diff., cumulative difference; Recon., reconstruction; T-VAE, timeseries-variational auto encoder;

t-SNE, t-distributed stochastic neighbor embedding.
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Figure 7. (Color online) t-SNE Visualization for Our Algorithm, a Naive Time-Series VAE, and TimeGAN for Census Genera-

tion in Two Hospital Units

(b) (©)
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-25 0 -15

0 15 -25 0 25

Notes. In each panel, the two sets of dots denote the original data and the generated data. Better mixing of the dots indicates higher-quality gen-

erated data. (a) DT-VAE. (b) T-VAE. (c) TimeGAN.

Stochastic Optimization for Network

Decision Making

We built a two-stage stochastic optimization that takes
the forecast as input and generates on-call and deploy-
ment decisions over a three-week horizon, implemen-
ted in a “closed-loop” rolling-horizon manner. At the
beginning of each week, based on a 21-day forecast,
this optimization prescribes the weekly schedule on
how many nurses to put on call for potential deploy-
ment one to two weeks in advance (step 1 of the DSS).
Then, at the beginning of each day, based on the real-
ized census and the updated forecast for the rest of the
week, we again solve the optimization, and we use the
first-day decision to determine the actual deployments
on the current day (step 2 of the DSS).

In the optimization, the two levels of decisions are
made sequentially. The first decision is the number of
nurses to put on call each day for travel from their
home hospital to a remote hospital. This decision is
made prior to observing the census scenarios of the
hospitals in the network. Then, after observing the cen-
sus scenarios, the decision is made whether to deploy
nurses who have been put on call to a remote hospital
or to cancel the deployment so that the nurses will
work their shifts in their home hospitals. If nurses are
deployed to a remote hospital, they will work a mini-
mum number of shifts at the remote hospital before
returning to their home hospitals to avoid excessive
travel. The secondment is an important design feature
that ensures that a nurse does not have to travel two

long-distance legs in addition to working a 12-hour
shift.

The primary objective is to reduce system-wide
understaffing without being too disruptive to nurses’
lives through excessive or unreasonable travel sche-
dules. To calculate understaffing, we account for the
fact that nurse demand and the patient census are not
equal. Instead, we calculate nurse demand by consider-
ing the patient-nurse ratios for different acuity levels;
for example, one nurse is required for taking care of
two patients in the intensive care unit (ICU) or four
patients in the medical and surgical units.

In addition to understaffing costs, we consider other
costs that can be tuned to achieve desired performance
along multiple dimensions, such as the efficacy for the
health system and attractiveness to DC nurses. These
parameters include the following. The cost associated
with the transfer decision results from two parts: (1)
the fixed cost that compensates for the transfer and
depends on the transfer distance and (2) the variable
cost that compensates for premium pay during the
length of the secondment. Tuning these transfer costs
creates a system that has more or less churn: that is, the
amount of travel that occurs across all DC nurses. If the
costs are higher, then the system will generate less
travel for the DC nurse pool on average; if the costs are
lower, the system will generate more travel on average.
If a transfer is cancelled during the deployment deci-
sion phase, we recoup a percentage of the transfer cost.
This parameter determines how often a nurse who is
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put on call will actually be deployed to a remote hospi-
tal. The lower the percentage of cost that can be
recouped from the initial transfer decision, the less
likely an on-call decision is to be canceled. Conse-
quently, there will be a higher probability on average
that a nurse will be deployed to an on-call destination.
During program design, we adjusted these costs to
achieve the desired system performance (see the Imple-
mentation of Delta Coverage and Practical Challenges
section for additional details).

In addition, we utilized these tuning parameters
along with constraints to achieve several design specifi-
cations, such as (1) limiting the number of times that a
nurse is put on call but not called in, (2) limiting the
average daily volume of nurses working remote shifts,
(3) ensuring that nurses do not take two travel assign-
ments in a row without working an intermediate shift
in their home hospitals, and (4) ensuring equitable use
of Delta Coverage deployments to avoid perceived (or
real) favoritism for certain hospitals. The full model
specification is given in Table A.1 in Appendix A.

Integration of Predictive and

Prescriptive Components

The most difficult task in evaluating the objective
function of the stochastic optimization is the cost-to-
go term, which is an expectation over all possible cen-
sus scenarios. To evaluate this expectation, a common
approach is to use the sample-average method. In our
setting, the sampling-based optimization should fully
account for the generative modeling structure used in
the forecast step as specified in the section Generative
Modeling to Predict Correlated Hospital Occupancies.
That is, instead of directly sampling the census se-
quence X’s as in conventional settings, we first sample
the latent sequence Z’s from a multivariate standard
Gaussian distribution. Then, conditional on each sam-
pled latent sequence z = z1.r, we obtain the mean and
covariance for X|z via the decoder and sample accord-
ingly. In other words, although the two-stage SO
developed in the Stochastic Optimization for Network
Decision Making section may appear to be standard, it
is different in the sense that the demand is a doubly
stochastic process, contrasting with the conventional
SO setup. This brings new computational challenges
for sample-based methods because there are two
layers of randomness. One of our main technical con-
tributions in this paper is to develop an efficient algo-
rithm, leveraging a quasi-Monte Carlo method and
the special doubly stochastic structure, that efficiently
overcomes this computational challenge. This could
generate future technical research to study this type of
new SO, which is uncommon in the literature and
understudied.

To specify, recall that conditional on a sampled (real-
ized) sequence z1.7, the mean for the census in unit i on
day t is i o, and the variance is o} ,. For a given initial
census Xy = xo, each X} can be characterized as

X ~ (o + 1y g(z1:0)) + 03 g(z1) - N(O, 1),
t=1,...,T, i=1,...k

where N(0, 1) is a standard normal random variable.
That is, X} is a doubly stochastic random variable that
depends on the latent variables z;;; and ;¢ ~ N(0,1).
For the doubly stochastic random variable, sample-
average methods require two loops to obtain the sam-
ples, where the outer loop is to sample the latent vari-
ables and the inner loop is to sample the normal
random variables (;,’s. In the following, we let =
{C; +} for the set of independent and identically distrib-
uted normal random variables for each station i and
each day t used in conjunction with z;; to create the
doubly stochastic distribution of Xi. Let 2", be the mth
sample of the latent sequence, and let ’ be the (th set
of sampled random variables. In the interest of space,
we focus on explaining the calculation of the under-
staffing part in the cost-to-go term. We define y?ft’f as
the auxiliary variable that approximates the value of
the understaffing function in unit i on day ¢ given the
mth sample 2", and the £th sample {*:

s.t.

m,

USSR CORTANCA)
+0l o2 ¢, T, it 6,m,
)
Vi t, €, m.
(6)

Here, for ease of exposition, we suppress the depen-
dence of 77} on the recourse decision, which can reduce
the understaffing through the minimization in the sec-
ond stage of the stochastic SO.

¥
vl =0,

Efficient Sampling

For both the inner and outer loops, we need to sample
from a multivariate standard Gaussian distribution
(for zi.7 and C, respectively) to evaluate the sample
average in Equation (4). The benefit is that there is no
correlation among these Gaussian random variables
(as opposed to directly sampling from {X!}'s); thus,
we can sample each coordinate independently. The
disadvantage is that the dimension is still high (for
example, z;.r has 21 dimensions when we plan for
three weeks out with T=21). The conventional Monte
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Carlo method is a viable approach for high-dimensional
space but suffers from larger variance, requiring a large
number of samples to achieve accurate evaluation of the
sample average. This imposes a great computational
challenge for our healthcare partners because the open-
source optimization solver cannot handle a large num-
ber of samples. To address this issue, we leverage the
quasi-Monte Carlo method, which is known to reduce
variance in sampling; it can improve the rate of conver-
gence from O(1 /VM) in the conventional MC method
to O(1/M), where M is the number of samples (Caflisch
1998). This means that a much smaller number of sam-
ples is required to achieve a similar level of accuracy.

Specifically, we use a variant of the Latin hypercube
sampling (LHS) (Owen 1998). For a desired number of
M samples, we first divide the real line for each coor-
dinate (a univariate Gaussian) into a few adjacent
intervals defined via Z ={Z1,...,Zm}: for example, a
set of M disjoint partitions of R. For m=1,..., M,
[z, @(x)dx is the integral of the density in each parti-
tion Z,,, with ¢(x) being the probability density func-
tion (PDF) of the standard Gaussian. We choose the
partition such that each [, ¢(x)dx =1/M is equal, and
we set a “representative value” u,, for partition m
using the middle point of Z,,. Finally, we follow the
LHS method to create M samples; for example, we cre-
ate T independent and random permutations of the
vector u = {uy,...,up} and match the value from each
of the T coordinates to have M sampled vectors of T
dimensions, {z!";}"_,. We create the samples {C‘}}_, in
a similar way.

Notably, even though our method still requires sam-
pling from a high-dimensional space, the quasi-Monte
Carlo method allows us to sample efficiently regard-
less of the dimensions, reducing sampling variance
and the number of samples needed. This is equivalent
to adding carefully chosen cuts to the LP as opposed to
relying on purely random-generated cuts from the MC
method (the traditional sample average method) to
achieve more accurate approximation in Equation (4)
and speed up the solution. The feasibility of using the
LHS method benefits greatly from the multivariate
Gaussian distribution because it allows for an explicit
form of the PDF and independent sampling for each
dimension. This advantage would not be possible if
we were working directly with the census variable
given the complexity of the joint PDF and the correla-
tions. In addition, the sample is from the multivariate
standard Gaussian (instead of the census variable),
which can be reused to avoid resampling from X when
the forecast is updated, and the optimization is solved
again each day (step 2 in the DSS). The mapping from
Z to X is an exogenous input that can be trained offline
(for example, on a better computational platform) and
loaded as a matrix to the LP with warm-start techni-
ques to significantly increase solution speeds.

In summary, we transform a large-scale SO problem
into a tractable LP. The seemingly complex generative
framework actually enhances both prediction and pre-
scription capabilities. This integration highlights the
significance of the generative framework while also
providing a portable solution for our partner’s real-
world implementation needs.

Implementation of Delta Coverage and

Practical Challenges

In this section, we outline our tiered implementation
process when deploying an analytics-based solution in a
healthcare environment, which may also apply to other
researchers in similar endeavors. We detail the chal-
lenges that we faced during the pilot in Appendix F.

The Delta Coverage analytics suite was launched in
October 2021 as a Microsoft PowerBI application (details
of this dashboard are in Appendix E). Because of the
novelty of the program, we had no benchmark exam-
ples. To mitigate potential risks, we executed a three-
phase tiered implementation with report outs to gain
buy-in from upper-level management after each phase.

Preimplementation: Counterfactual

Before implementation, we conducted a counterfactual
analysis using two months of historical data and esti-
mated a 4% reduction in understaffing by implement-
ing the optimal recommendations (we did not measure
overstaffing). This “low-cost” testing of the analytics
suite was crucial in gaining management buy-in be-
cause it demystified the “black-box” DSS and show-
cased the power of OR analytics. This was especially
valuable given the previous experiences of IUH with
consulting companies that provided opaque solutions
lacking actionable information.

Phase 1: Live-Test Run

Based on the promising results, we launched phase 1,
building a PowerBI dashboard and integrating it with
IUH data warehouses and the analytics suite. Over the
next five months, we field tested the system live, run-
ning it daily to estimate the full-time equivalent staff
needed for support and maintenance. The results
showed a 5% reduction in understaffing and a 1%
reduction in overstaffing. These outcomes, along with
strong advocacy from nursing organization leader-
ship, convinced senior executive leadership to support
a pilot.

Phase 2: Iterative Design Improvement

A critical factor in the success of our iterative design
process was the ability to use our stochastic optimiza-
tion and census forecast model to instantly project the
impact of different design decisions. The optimization
also has tuning parameters that can ensure that the
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program is made operational such that it can meet tar-
get specifications.

Phase 3: Pilot Program

We began by identifying a group of hospitals to partici-
pate in the pilot through discussions with all of IUH’s
chief nursing officers. Subsequently, we sought feedback
from the CNOs of the participating hospitals and iter-
ated multiple times to design a program that would be
conducive to adoption. The recruitment process for the
DC nurse pool was a crucial aspect of the pilot program,
requiring considerable effort to attract highly skilled and
location-flexible nurses. These nurses not only needed to
be willing to travel but also had to be able to work in
multiple clinical settings, transcending single specialties,
acuity levels, or units. Several program specification
redesigns were necessary to achieve the recruitment tar-
get, and by the program’s launch on May 1, 2023, we
successfully recruited 10 DC nurses both internally and
externally to IUH. We describe the reasons behind the
delay between the prototype and launch along with
other practical challenges in Appendix F.

Performance Log

We built a system that automatically logs all data pulled
for input into the optimization and forecast models as
well as the outputs of those models. This log is updated
each time the DC dashboard is run because some of the
data cannot be collected after the fact; for example, data
that come from central data warehouses might be over-
written with newer data. This log has allowed us to detect
changes in the enterprise data systems that could affect
our model inputs, validate forecast accuracy, and monitor
the value of the program to the nursing organization. See
the details of the implemented dashboard in Appendix E.

Conclusion

The statewide Delta Coverage Program presents a col-
laborative effort between academia and industry, and
itis an important first step in addressing nurse staffing
challenges. With its integrated predictive-prescriptive
framework, the Delta Coverage Analytics Suite pro-
vides real-time distributional nurse demand forecasts
and dynamic deployment decisions, resulting in re-
duced understaffing, optimized resource utilization,
and improved nurse job satisfaction and patient care
quality. The successful pilot phase showcased signi-
ficant reductions in understaffing and overstaffing,
demonstrating its potential for long-term impact in
mitigating nurse shortages and burnout, especially in
underserved regions. Notably, the success of the pilot
goes beyond addressing immediate staffing concerns;
it demonstrates the feasibility of a new approach to
nurse staffing. Historically, the healthcare industry has
heavily relied on travel nursing to address staffing
gaps, a practice fraught with logistical and financial
challenges. The Delta Coverage pilot, despite its seem-
ingly modest scale, serves as a proof of concept for a
more sustainable and efficient solution. By integrating
full-time resource nurses capable of providing care in
multiple hospitals and adapting to short-notice staff-
ing needs, this innovative approach shows that it is
possible to reduce reliance on costly and inflexible
travel nursing contracts. This program offers a sustain-
able solution to address the multifaceted challenges of
nurse staffing, burnout, and healthcare disparities, fos-
tering a nurturing environment for nurses and strate-
gically allocating resources. The program’s positive
impact extends beyond immediate staffing concerns,
leaving a lasting impression on the well-being of the
nursing workforce and the communities it serves.

Appendix A. Model Specifications and List of Notations
Table A.1. List of Notations for the Stochastic Optimization Model

Notation Description

T Length of the planning horizon for on-call and deployment decisions

k Number of hospitals in the system

di Number of DC nurses scheduled to work at time + who have home hospital i

X A k x T random vector denoting the demand for nurses at hospitals i=1,...,k in time period t=1,...,T

u:j Decision variable denoting how many nurses to put on call for travel from location i to location j at time ¢

bij Decision variable denoting how many nurses to deploy from location 7 to location j at time f (this variable depends on the
realization of the nurse demand random vector, X, as the decision is made after observing the census at all the hospitals)

nt The number of nurses initially scheduled at hospital i at time ¢ prior to DC deployment

i The total (net) number of nurses at hospital 7 at time period t after deployment decisions, bf-j, have been executed

S The number of consecutive shifts a nurse must work at hospital j having been transferred from hospital i

Cy Unit nurse understaffing cost

Cost of putting a nurse on call for travel from hospital i to hospital j at time ¢
" Cost of premium pay for nurses who are working at a remote hospital

n The amount of additional travel cost recouped by canceling a deployment
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A.1. Stochastic Optimization Model for DC Program
Decision Support

We denote the on-call decision as a = {at }, where each at is
the number of DC nurses to put on call for a future transfer
from unit i to unit j on day ¢. Similarly, we denote the
recourse call-in decision as b = {b/}, which is made after
seeing the realization of the census sample path X = {Xi}.
The recourse decision corresponds to either activating
the transfer of an on-call nurse or canceling the transfer.
The transferred nurse is committed to work on multiple
shifts at unit j for a length of S days, referred to as the
secondment.

Nursing shortage is captured via the understaffing cost, c,.
The cost associated with the transfer decision a has two com-
ponents: (1) the fixed cost that compensates for the transfer
c;], which depends on the transfer distance, and (2) the vari-
able cost that compensates for the length of the secondment
¢, SU. If a transfer is cancelled during recourse, we recoup 1 —
n percentage of the transfer cost. Mathematically, the objec-
tiveis

T k k
min >33 (c] +¢,5")a] + Ex[V(a, b, X)], (A1)
2 t=1 i=1 j=1
V(a,b,X)
L k a i i i .. L. ..
=min Y leu(X; =) — (1= n)(e] + 6,8 b)),
t=1 i=1 j=1
(A2)
subject to

k _
Za”<d’ YOS Zb”<2a” Vi,

j=1 e=(t-Si+1,1)*

where d! is the number of available DC nurses with home
location i on day t and 7! is the number of nurses available at
location 7 on day f after considering the actual deployment
(recourse decision) and secondment to the number of sched-
uled regular nurses 7

k

k t . t N
mp=m=Y > bl+Y > b (A4)
j=1 (=t—Si

=1 (=t_gi

Appendix B. More Details on the

Generative Model
B.1. SDE for Modeling Generative
Dependence Structure
Motivated by the stochastic Susceptible-Infected-Recov-
ered (SIR) model (Allen 2008, 2017), we assume that the
arrivals A; and discharges D; follow

Ag =ap; Do =dy;
Ar= Ay A b(A) + 0,20t =1, T (B.1)

D;=D; 1 +by(Di 1)+ 0,20, t=1,...,T, (B.2)

where the sequences of latent variables 77, ..., Z% ~ \/(0,I)
and Z4,...,74 ~% N(0, ;) are all independent and identically
distributed standard Gaussian vectors in R and drive the
arrival and discharge processes. Equations (B.1) and (B.2) can
be seen as the discretized version of the original stochastic dif-
ferential equations for the stochastic SIR model, with b,(-) and
bs(-) as the (unknown) drift functions and ¢,Z% and 0,Z¢ as
the (unknown) diffusion terms.

B.2. VAE Learning Framework
Instead of directly evaluating the likelihood function pg(y;.7)

(A3) given in Equation (3), VAE optimizes the ELBO as the surrogate
Table A.2. List of Notations for the Prediction Model
Notation Description
X A vector that corresponds to the patient census (number of patients) on day f in k hospital units
Ay Daily arrivals to the hospital
D, Daily discharges from the hospital
€; The measurement errors
A The difference between arrival and discharge variables A; and D; (for example, the net changes in X,’s); that is, Ay = A; — Dy
Z{ Sequence of latent random variables driving the arrival process, A;
zd Sequence of latent random variables driving the departure process, D,
Z, Sequence of latent variables driving the cumulative differences between arrivals and departures
Z1.T Sequence of realized latent (prior) variables
r; The cumulative difference between the census on day f and the initial census X, = xg
V1T The observed cumulative difference sequence from data
0 The set of parameters to be learned to forecast the census
po(y, z1:4) The conditional distribution of the cumulative difference as a function of the latent variables z

q¢(z1.7|y.r) The variational distribution that approximates the true posterior distribution

fo(-) The parameterized decoder function with parameter 6 to learn conditional distribution pg
fo() The parameterized encoder function with parameter ¢ for the variational distribution g,
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objective derived in our setting:

logpo(yyr) = IOg/PH(VLT/Zl:T)le:T

do(zir | 74, T)
=lo / 0y Z1.T ) 1.
g | poyir zir) 991 | V1.p)

g {log (M)}
’ q‘i’(Zl:Tl)/l:T)

T
thl Pyl zi:))p(ze|z1e-1)
T
thl 9¢(zt|1z1:4-1,714)

=E

Z1.T~q¢

T

= E., logp(y,lz14)

=1
—E.., . Dx(q¢(z¢z1:4-1, 1. IN(O, 1))

=L(yy.7)-
(B.3)

Recall that the key for VAE evaluation comprises two parts.
The first part is to learn the conditional distribution pg(y, |z1.)
via a decoder fy(-) with parameter 0. It is called the decoder
because it decodes the latent variables z;.; to generate y;. The
second part is to learn g4 (z1.7|y;.7), which is the variational
distribution with parameter ¢ that approximates the true pos-
terior distribution. This variational distribution is called the
encoder, parameterized with f,(-) with parameter ¢. It encodes
observed y,, into the latent space via the variational distribu-
tion g¢(z1.T|y;.r). In implementation, we use an additional
hyperparameter A > 0 in front of the Kullback-Leibler term to
further balance the two parts in ELBO.

In the rest of this section, we will use fy(z1;¢) and po(y,|z1:¢)
interchangeably, and we use 2"’ to denote samples from the
prior distribution; we will use f;(y;,) and pg(z14]y;,) inter-
changeably, and we will use z** to denote samples from the
posterior distribution.

B.2.1. Decoder. A key step in deriving the ELBO in Equa-
tion (B.3), particularly from line 3 to line 4, is via the following
decomposition:

PG(V1;T|Zl:T)p(Zl:T)

T
(HPG(% |let)) p(z1.r)
=1

pQ(VLT/ Z]:T)

Il

T T
=[[peilzu0] [pGlzie0), (B4
t=1 t=1

where p(z;|z1:—1) denotes the conditional prior distribution for
latent variables z;. We make an important assumption here for
the conditional distribution pg(y;.71z1:7) and prior distribution
p(z1.r). As discussed, in the cumulative-difference learning
setup, each y; depends on latent variables z;.; to avoid error
accumulation. This essentially makes y; conditionally indepen-
dent across different time steps given realized latent variables
z1. That is, for any two time steps w # v < T, the cumulative-

difference variables (y,|z1w) L (Y, 121:0) are independent con-
ditional on corresponding latent variables. This assumption
is crucial, allowmg the transformation from pg(y,.;|z1.7) to
the product form [1_, pe(y,214).

Following the VAE literature, we assume the conditional
distribution pe(y,|z1:) ~ N(u w,at,g), a multivariate Gaussian
distribution with mean y, , and diagonal covariance matrix
o1 ¢ for time t. This is a reasonable assumption in our setting
because the difference in census can be either positive or nega-
tive (in contrast to arrival and departure times, which must
be positive). Under the Gaussian assumption, the decoder fg
is represented by the mean and covariance matrix, denoted as
fo={(u; g.01,0)};, with the subscript ¢ highlighting the time
dependency. For the prior distribution, we assume they are
independent Gaussian, namely p(z¢|z1.—1) ~ N(0,I), with I €
R being the identity matrix. Although the priors are
assumed to be independent, the decoder fy allows us to cap-
ture the underlying complex correlations.

B.2.2. Encoder. We factor the variational distribution
l]q&(leT | lﬂl:T) as

T
ozt lyr) = [ [ 90 20 1,70). (B.5)

t=1

During the training stage, we will sample z}™ * from the poste-
rior distribution g4(z¢|z1:4-1,);,) and let the decoder recon-
struct the observed y,’s. The sampling is recursive because we
need to condition on sampled variables z’f’fﬁl and observed
71, When sampling for time t. Following the VAE literature,
we assume that variational distribution qg(z¢|z1:4-1,,) ~
N(yt ¢/, é) is also a multivariate Gaussian distribution with
mean [, , and diagonal covariance matrix o;¢. Under this
Gaussian assumption, the encoder f; is represented by the
mean and covariance matrix, denoted as f, = {(yt 01, o
with the subscript ¢ highlighting the time dependency

B.2.3. Decoder Design. For the generative process,
Difference-learning Timeseries Variational Autoencoder (DT-
VAE) uses a decoder fg(-) with parameter 0 to decode latent
variables z1, to generate ;. That is, the decoder fy(-) learns the
conditional distribution pg(y,|z1;). Recall that a key step in
deriving the ELBO in Equation (B.3), particularly from line 3 to
line 4, is via the decomposition for pg(y,.;,z1.T) as given in
Equation (B.4), where pg(y,|z1.) denotes the approximation of
the true conditional distribution p(y,|zi;) and p(z|z14-1)
denotes the conditional prior distribution for latent variables z;.

From (B.4), we make an important assumption on the condi-
tional distribution pg(y,.;|z1.7) and prior distribution p(zy.7).
As previously mentioned, for each y; it solely depends
on latent variables z;.;. This essentially makes y; conditionally
independent across different time steps given the latent vari-
ables z’ljf;m. That is, for any two time steps w#v < T, the
cumulative-difference variables (y,,|z11) L (7, |z1:0) are inde-
pendent conditional on corresponding latent variables. This
assumption is crucial, allowing the transformation from
po(yy.r1z1:7) to the product form Ht 1Po(V1z1:).

For the prior distribution, we assume they are independent
Gaussian, namely p(z;|z1.+) ~ N(0, ). Although z/""s are inde-
pendent, the decoder fp still allows us to capture the underly-
ing correlation via the relationship between y; and z!; or
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Specifically, we design the decoder via a recurrent network

o, enclosing the information 2" from all time steps recur-
1 g 1:t P

sively, with a feed-forward network fy,, further transforming

the input to Lo and oy 9. We denote

hr, 6, =f91 (ht—l,el ,Zt) (#t, 0r Ut,e) =f92 (he), (B.6)

where 11, ¢, is the hidden state in the RNN structure fy, .

B.2.4. Encoder Design. DT-VAE learns an encoder fy(-)
with parameter ¢ to encode observed y,, into the varia-
tional (posterior) distribution g4 (z1.7|y;.;). Recall that the
posterior distribution g4 (z1.7|T'1.r) can be written as Equa-
tion (B.5). During the training stage, we will sample ZfGSt
from the posterior distribution g4 (z¢|z14-1,7;,) and let the
decoder reconstruct the observed y,’s. For samples from
posterior distribution, at each ¢, we sample z'* from the
distribution conditioned on the historical posterior vari-
ables zﬁ"ﬁl and all observed y,,.

Following the VAE literature, we assume that variational
distribution qg(z¢|z1:4-1, 1) ~ N(.“t, ¢’0"¢’)’ a Gaussian distri-
bution with a diagonal covariance matrix, where 1y and oy, ¢
are learned using the encoder fy. To capture the reliance of
historical information on both z"*’s and y’s, we decompose

fo into three functions with parameters ¢,, ¢,, and ¢,:

hi, o, = fo,(ht-1,6,,7,)
Bt =f¢z(hf/¢>1'llt—1,¢)
0t = fo, (M, 01-1,0), (B7)

where I ¢, is the hidden state in RNN structure f;, . For each
time step, /i, encodes all observed y;,,. The RNN structure
f¢, will output the mean of posterior distribution y, , by uti-
lizing the /4, and previous i1, Therefore, for each time
step, the current mean 1, , contains information of previous
means fiy, q which resemble the conditional structure in
9o(zt|z14-1,74,) from Equation (B.5). Similarly, the RNN

structure f% outputs o 4 by utilizing ht,q‘>1 and 01,4, which

contain prior information of y,, and zi’"fil It is noteworthy
that the recursive design is guided by our mathematical
results, which turn out to be critical. We tried other heuristic
designs without properly using the prior information as sug-
gested by the theoretical form, and they failed to learn, which
highlights the importance of theoretical justification.

B.2.5. Computational Time. The DT-VAE method typically
requires 500-1,500 epochs in training. This is far fewer than the
5,000-10,000 training epochs required by TimeGAN. The actual
training time of DT-VAE varies by the training data size. Data
sets with around 500 sample paths require about 10-20 minutes
of training and about 5 minutes to generate 1,000 sample paths.
This is significantly more efficient compared with TimeGAN,
which can take at least three hours for training.

Appendix C. Prediction Performance Evaluation

We demonstrate the advantage of our method (the genera-
tive modeling structure and cumulative-difference learning)
over traditional statistical methods, such as Autoregressive
(AR) models. Our evaluation platform is a semisynthetic

hospital census data set created from a simulation model,
which is calibrated with real data from a partner hospital.
Specifically, the daily arrivals a(t) follow the discretized Cox—
Ingersoll-Ross process (Cox et al. 2005), with the drift
function depending on the day of week and the daily dis-
charges d(t) coming from simulating patient movements
within hospital units. All the parameters to simulate the arri-
vals and discharges are calculated empirically using real
data. We provide an overview of the CIR model, a description
of the real data set, and details of the semisynthetic genera-
tion in the rest of this section.

C.1. Cox-Ingersoll-Ross Model

In generating the arrival process, we assume that the arrival
rates on different days are random and that they follow the
CIR process. The standard CIR process can be characterized
by the following SDE:

dr(t) = a(u — r(t)dt + o+/r()dW(t), (C.1)

where W; is the Wiener process, p1 represents the long-term
mean, a represents the speed of the adjustment to the long-
term mean, and ¢ represents the variation of the process.
Note that the drift function, a(u — r(t)), in the standard CIR
process is time stationary. However, the real data show that
the hospital arrivals exhibit a strong day-of-week pattern. We
describe how we modify the standard CIR process to gener-
ate a time-varying drift function in Appendix C.2.

To simulate arrivals from the CIR model, one common
approach is through the Euler-Maruyama method, which
provides an approximated numerical solution:

r(t) = max(r(t — 1) + a(u — r(t — 1))At

+ 0/ |r(t = 1)[VAtz,, 0), (C.2)

where the process uses max(:,0) to ensure that no negative
values appear during the approximation, which is one of the
properties in the CIR model.

C.2. Description of the Real Data Set from IUH

The real data set comes from an IUH hospital in Indiana. The
data set contains patient-level movement history between dif-
ferent units in the hospital. The data span from 2020 to 2021.
The units can be categorized into two types: medical/surgical
units (non-ICU units) and ICU units. For each patient, the
data contain time stamps on arrival time to each unit, the
transfer in/out times between units, and the discharge time
from the hospital. Using these time stamps, we can estimate
the empirical daily arrival rates for the two types of units and
the length-of-stay distributions in each type of unit.

We use the following notations for these estimated quanti-
ties. For each day, a5+ = > ,44,+ denotes the total arrival rate
on the day ¢, and a,, ; denotes the arrival rate to units u, where
u € U = {nonICU,ICU} denotes one of the two types of units.
Assuming we have T =7n days in total with n samples for
each day of week, we denote

e mean of arrival rate by day of week: {u,,...,u,}, where
= 1/”227:0(“1’105,#710);

o standard deviation for arrival rate by day of week: 0; =1/n

ZZ;:O(ahos, i+7w — ‘u,‘);
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Au,t

e routing probability: p, =1/TY |, o for each u; and

o Length of Stay (LOS) distribution: pi’i = ); ;
where X, ; denotes the number of patients staying in unit
category u for s days and X,, denotes the total number of
patients staying in this unit category. For the LOS distribu-
tion, we further assume that the maximum LOS is four
days (validated by the data because the proportion of
patients staying longer than four days is minimal). With
these parameters estimated empirically from the real data
set, we then use them to generate semisynthetic data in
Algorithm C.1.

Algorithm C.1 (Semisynthetic Data Generation)
Generate arrivals. First, we generate the arrivals by the
numerical CIR process with the parameters {u,,...,1,}
depending on the day of week:

a(t) = max(a(t — 1) + a;(u,0,, —a(t — 1))At

+0,0,,\/ la(t — 1)[VAtz,,0).

Assign arrivals to units. For each of unit u € {MS, ICU},

a,(t) = Bionomial(a(t), p,), for u € {nonICU, ICU}.
Generate discharges. Using the length-of-stay probabil-
ity table,

du(t + i) = Multinomial(a, (t), p), for i€ {0,1,...,4}

I
du(t) = > du)).

j=t—4

Generate census. Generating census according to

X () = x,(F = 1) + a,, () — dy(b).

Algorithm C.1 describes the procedure of generating the
semisynthetic data. Note that to capture the day-of-week
pattern in the arrival rates, we modify the standard CIR pro-
cess to generate a time-varying drift function, where y; fol-
lows a periodic pattern with one week (seven days) as the
period. Correspondingly, we need to adjust the mean rever-
sion factor a; to be time varying through a weekly update
scheme. For example, setay,...,a7 =0.1and as,...,a14 =0.2.
We let a; gradually increase to one during the first five weeks
to capture the transient effect. The primary benefit of this
semisynthetic generation via Algorithm C.1 is that it allows
us to calculate the “ground truth” parameters, such as the
expected daily number of arrivals and discharges. Using
these calculated numbers, we could compare them with the
corresponding results estimated from the generative models
for evaluation.

Appendix D. Enlarged Figure for Delta Coverage
Network Design

In this appendix, we discuss the final design of the Delta Cov-
erage program as implemented at the Indiana University
Health System. The small circles in Figure D.1 are participat-
ing hospitals. The larger circles Algorithm C.1 are the pods of
hospitals, each with its own Delta Coverage team. A Delta
Coverage team only floats within its own pod.

Figure D.1. (Color online) The Final Network Configuration
for the Delta Coverage Program
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Appendix E. Delta Coverage Dashboard
Functionality and Features

In this section, we describe the Delta Coverage Dashboard

and how it supports on-call and deployment decision making

in a variety of ways.

E.1. Dashboard Functionality and Usage
Once or twice a day, non-DC staffing data for the next 21 days
are pulled from the Kronos timekeeping database and from
a separate DC staffing database. The latter was manually
curated to allow the DC program’s implementation team to
have more control over the data stream as the program was
being rolled out. We also pull patient location data from the
enterprise data warehouse; these data provide information
about individual patient movement for the past 30 days. The
movement data contain the location of each patient at each
hour of the day. The granular patient location is then sent
through a data pipeline, where it is cleaned of (significant)
data errors and converted into daily patient arrival rates
(emergency department or elective admission), discharge
rates, and occupancy acuity levels (medical/surgical, pro-
gressive care unit (PCU), or ICU) at each hospital. The data
are gathered separately for day versus night shifts, with day-
shift data starting from 11 a.m. and night-shift data starting
from 11 p.m.

Once the data pass through the pipeline, they are entered
into the prediction model, which can generate census sample
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Figure E.1. (Color online) This Screenshot Shows the Full View of the Delta Coverage Dashboard Front Page
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paths to input into the stochastic optimization model. The
optimization run uses a warm-start approach. That is, the
algorithm starts from the previous day’s optimization solu-
tions to most efficiently use the computational power allo-
cated to the pilot. The on-call and deployment decisions
along with the current staffing plan and expected nurse
demand at each hospital are entered into a platform-agnostic
comma separated value (CSV) file. The output data file is
then read into a user interface that the Delta Coverage design
team created to inform Delta Coverage scheduling and
deployment decisions, as shown in Figure E.1. The interface
allows the user to display different views of the data in
graphical form. For example, the lower right panel of Figure
E.1 plots the nurse demand versus the staffing. It also allows
the user to filter the table based on the selected criteria. The
user can select day or night shift (in the upper left panel of
Figure E.1), any subset of hospitals (in the second panel down
the left side of Figure E.1), and the deployment group, which
denotes the set of DC nurses being considered for transfer.

The DC nurse manager deploys DC nurses scheduled for
the current day based on the optimization model’s deploy-
ment suggestions. Once a week, the DC manager informs the
DC nurses of their planned work (on-call) locations based on
the optimal on-call decisions generated by the most recent
run of the full optimization model.

E.2. Dashboard Visualization Features

One of the key features of the Delta Coverage Analytics appli-
cation is a suite of visualizations to help users understand the
impact of the nurse deployment actions on the broader sys-
tem. The visualizations allow for

1. heat maps detailing the level of understaffing at
all the hospitals before and after the deployment deci-
sions and

2. graphs of the past and forecasted occupancies and
the nursing staff utilization before and after deployment
decisions.

These features are integral to the Delta Coverage decision
and execution process because they allow

1. users to test what-if scenarios and get immediate feed-
back on how changing the optimal recommendations would
impact the system and

2. management to provide evidence to the individual hos-
pitals of why the decisions are being made and how the deci-
sions increase fairness in the system.

As an example, the lower right panel of Figure E.1 dis-
plays the forecasted demand and scheduled nurses over the
next two weeks. In the lower left panel of Figure E.1, users
can adjust which staffing plan to view. On the main page
(not displayed here), they can view the staffing and demand
based on the current schedule or the recommended schedule
after the optimal deployment decisions. Therefore, man-
agers can immediately see the impact of the optimization
recommendation.

Appendix F. Detailed Postpilot Analysis and
Lessons Learned

Our system included three phases of performance runs that

are associated with the three phases of implementation. In the

preimplementation phase (historical counterfactual), the two-

month analysis suggested a 4% reduction in understaffing. In

phases 1 and 2 (the live testing and tuning of the analytics
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suite), we projected that the Delta Coverage program could
potentially reduce understaffing by 5% and reduce overstaff-
ing by 1%. The phase 3 performance analysis was the most
critical given that it was based on the full pilot implementa-
tion, where we were able to learn exactly how the analytics
suite could be used in combination with additional knowl-
edge of nurse managers using the dashboard. To perform the
analysis, we compared two cases for a fair “apples to apples”
assessment of the pilot program.

Case F.1. We counterfactually assigned each Delta Coverage
nurse to a fixed hospital location (“home hospital”) and did
not allow that nurse to work at any other hospital (i.e., stan-
dard pre-Delta Coverage approach).

Case F.2. We compare the counterfactual results with the
actual implementation results from the pilot (which involved
moving nurses based on the Delta Coverage analytics tool).

From the actual historical data, we were able to pull
the staffing schedule, including the number of unit-based
nurses, resource nurses, and travel nurses who worked and
the number of patients by acuity (ICU, PCU, and medical/
surgical). We calculated the number of nurses needed on
each shift by taking the number of patients of each acuity
and dividing by the industry standard patient-to-nurse ratio
for that acuity level. For example, if there are 10 ICU patients
(two to one ratio for ICU), 24 PCU patients (three to one ratio
for PCU), and 100 medical/surgical patients (five to one ratio
for medical/surgical), the number of nurses required would
be 10/2 +24/3 +100/5 = 33. We calculate the patient census
at 11 a.m. for the day shift and 11 p.m. for the night shift. To
calculate the amount of understaffing, we subtract the num-
ber of nurses working in the hospital on a given shift from
the number of nurses required in that hospital on that shift.
In the previous example, if there were 32 nurses working,
then the understaffing would be 33 — 32 = 1 nurse. We trun-
cate understaffing at zero so that if there had been 34 nurses
in the example, then understaffing would be (33 —34)* = 0.
The amount of overstaffing is calculated similarly.

For each shift that a Delta Coverage nurse worked, we
compared the actual amount of understaffing that occurred
with the amount of understaffing that would have occurred
had the Delta Coverage nurse worked the shift in that
nurse’s counterfactual “home hospital.” We utilized the
same method for overstaffing. In Appendix F.1, we present
the impact of Delta Coverage on the system as a whole by
calculating understaffing and overstaffing metrics across all
Delta Coverage shifts in all participating hospitals.

F.1. System-Level Metrics

F.1.1. Phases 1 and 2. To test our system prior to imple-
mentation, we pulled the most recent two months of histori-
cal data with staffing and patient census for each hospital on
each shift. We then ran the model iteratively starting with the
first date in the data set. Specifically, we provided the model
with the staffing and patient census for the current date (start-
ing with the first date) and the future staffing schedules for
the Delta Coverage planning horizon (e.g., the next three
weeks). We then ran the model to determine the Delta Cover-
age nurse deployment decisions. We then added the counter-
factual Delta Coverage nurses to the staffing plan for all the
days and shifts covered by the Delta Coverage planning

horizon. We incremented the date by one, moving to the next
day in the data. Using the Delta Coverage deployment deci-
sions, we then calculated the understaffing and overstaffing
for this subsequent day as if the Delta Coverage tools” plan
had, in fact, been implemented. We continued running the
tool on each consecutive day until reaching the end of the
data and then summed the understaffing and overstaffing
over all shifts in the historical data. For comparison, we cre-
ated a second counterfactual in which the Delta Coverage
nurses were instead assigned to a single hospital and not
allowed to deploy to other hospitals. Using the same number
of (counterfactual) nurses on each shift along with their hos-
pital assignments, we modified the staffing plan by adding
those nurses to the shifts at their assigned home hospital and
calculated the understaffing and overstaffing on each shift.
We then added the measures over the entire time horizon. In
this experiment, we assigned home hospitals to the non-DC
counterfactual nurses by spreading them evenly across the
six pilot hospitals, with the larger hospitals assigned an addi-
tional nurse because the number of nurses was not evenly
divisible by six.

F.1.2. Phase 3. The results of the pilot from May 7 to June
23,2023 were better than our initial dry run had projected. In
this analysis, we consider the impact that the Delta Coverage
program has had on understaffing and overstaffing in terms
of the number of understaffed shifts eliminated, the percent-
age reduction in understaffing, and the estimated annual cost
savings from the program.

F.1.3. Understaffing. Among the shifts that the DC nurses
worked, in a little more than one month (36 days), the Delta
Coverage pilot reduced understaffing by 33.5 shifts, which is
equivalent to

e a 17% reduction in understaffing and

o 340 fewer understaffed shifts per year (34 shifts per DC
nurse per year).

We obtain the annual estimate by extrapolating from the
36-day pilot by estimating the daily reduction in understaff-
ing and then multiplying by 365: that is, 365 x 33.5/36 = 340
annualized shifts. We acknowledge the limitations of this
method given the potential for changes in system characteris-
tics over the course of an entire year.

Next, we compare the efficacy of hiring DC nurses versus
hiring travel nurses, which are traditionally used to cover
supply-demand mismatches. This allows us to demonstrate
the marginal impact of the Delta Coverage Analytics Suite by
comparing the program’s actual performance with the coun-
terfactual performance of hiring 10 travel nurses instead of
the 10 DC nurses. Although we use travel nurses as our exam-
ple because they are typically hired to cover demand and
staffing mismatches, the following analysis applies to hiring
any type of non-DC nurse.

To execute our counterfactual, we use the staffing data for
all of the days/shifts (day versus night) that the Delta Cov-
erage nurse worked as well as data on the number of
patients in the participating hospitals. We then create a sim-
ulated scenario in which Delta Coverage nurses work all of
their shifts in their home hospitals instead of where they
actually worked. Recall that travel nurses (non-DC nurses)
do not move between hospitals, so the scenario described is
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the equivalent of hiring 10 travel nurses into the DC nurses’
home hospitals instead of the DC nurses who were actually
utilized. For example, for a DC nurse whose home hospital
is IUH Bloomington Hospital, every time that the nurse is
scheduled for a shift, we increase the staffing level at Bloom-
ington by one and reduce the staffing number where the
nurse actually worked the shift by one. This simulates
nurses working all their shifts at their home hospitals
instead of traveling between multiple hospitals.

From the adjusted staffing schedules, we obtain the
amount of understaffing and overstaffing that would have
occurred if 10 travel nurses had been hired instead of the 10
DC nurses using the same method as in phases 1 and 2. Com-
paring the understaffing metrics, 10 travel (non-DC) nurses
would have only reduced understaffing by nine shifts (in
36 days), which is equivalent to

¢ a 4% reduction in understaffing and

e 90 fewer understaffed shifts per year, equating to 9 shifts
per non-DC nurse per year.

This is a much lower magnitude compared with the reduc-
tion of 33.5 shifts (17%) from the DC pilot, which translates
into 340 fewer understaffed shifts annually. This projection
demonstrates the substantial marginal benefit of hiring Delta
Coverage nurses as opposed to travel nurses; hiring Delta
Coverage nurses would result in 250 = 340 — 90 fewer under-
staffed shifts than hiring traditional travel nurses. Stated
differently, for every understaffed shift avoided by hiring
a travel nurse, 340/90 = 3.7 understaffed shifts would be
avoided by hiring a DC nurse instead.

F.1.4. Staffing Cost. Next, we consider the financial impli-
cations of the Delta Coverage program. Specifically, we esti-
mate the number of travel nurses who would need to be
hired to achieve the same reduction in understaffing achieved
by the 10 DC nurses over the course of the pilot. We begin by
calculating the actual level and the travel nurse counterfac-
tual level of understaffing at each hospital on each shift (day/
night) for each day of the pilot. We then subtract the Delta
Coverage understaffing from the travel nurse understaffing
shift by shift. Thus, if understaffing at a given hospital on a
given shift was better (lower) using the travel nurse staffing
plan, the result is negative; conversely, if the Delta Coverage
staffing plan was better, the result is positive. We then sum
up the differences in understaffing at the hospital-shift (day/
night) level across all days of the pilot to obtain the total dif-
ferential in understaffing for each hospital. We calculated the
total difference in understaffing as 24.5.

To determine how many shifts of understaffing are elimi-
nated by each subsequent travel nurse addition, we take the
conservative approach of assuming that new nurses will be
assigned to all the currently understaffed shifts at their
assigned hospitals. For example, if Methodist Hospital’s night
shift was understaffed by one shift on 5/21, two shifts on
5/29, and three shifts on 6/14 and if a new travel nurse was
assigned to the Methodist night shift, then the total under-
staffing for the pilot would be reduced by three shifts, result-
ing in understaffing of zero shifts on 5/21, one shift on 5/29,
and two shifts on 6/14. We continue adding nurses to the
pilot hospitals until the total amount of understaffing is the
same as the total understaffing during the Delta Coverage
pilot. We add nurses to hospitals in two ways as described in

the following paragraphs. We then count the number of
nurses who were added to hospitals counterfactually to
obtain the estimate of the number of nurses required to
achieve the same understaffing as the 10 DC nurses.

F.1.4.1. “Crystal Ball” (Very Conservative). In this ideal
situation, we assume that IUH has precise foreknowledge of
the days, hospitals, and shifts that will experience under-
staffing. We then assign each subsequent non-DC nurse to
the hospital, and we shift to achieve the maximum reduction
in understaffing over the course of the pilot: that is, the hos-
pital/shift-type combination (day versus night shift) that
has the most days of understaffing given the current staffing
situation. Once a nurse is assigned to a hospital/shift type,
we reduce the understaffing on each understaffed day by
one to simulate the nurse working all of the understaffed
shifts in that hospital/shift type. After reducing the under-
staffing, we then find the next hospital/shift-type combina-
tion that has the most understaffed days, and we continue to
add nurses until the total understaffing during the pilot is
the same as that of the actual DC nurse pilot. Under this
assumption, we retrospectively calculate the number of
non-DC nurses required to eliminate these understaffed
shifts. The result indicates that even if we were able to fore-
see the future, 16 non-DC nurses would be needed to
achieve the same level of understaffing as the 10 DC nurses
in our pilot.

F.1.4.2. More Realistic (Slightly Conservative). In this
more realistic hospital /shift-type assignment method, to cal-
culate the number of additional travel nurses required to
achieve the same level of understaffing, we use the following
procedure. Given that there is a desire to balance new hires
across the main hospitals and shifts (day/night), we add new
travel nurses to hospitals and shift types in an order that
maintains a balance between the number of additional nurses
assigned to each hospital/shift type. For example, suppose
Methodist Hospital currently has no additional (counterfac-
tual) night-shift nurses currently assigned, whereas all other
hospitals have at least one. To balance the number of addi-
tional nurses assigned to each hospital, the next counterfac-
tual nurse will be assigned to the Methodist night shift. Ties
are broken randomly. The result of this analysis demonstrates
that JIUH would have to have hired 19 additional non-DC
nurses to achieve the same level of understaffing that was
achieved by the 10 DC nurses in our pilot. In terms of produc-
tivity, this implies that a Delta Coverage nurse is the equiva-
lent of 1.9 travel nurses and also has the benefit of being
familiar with the hospitals and care teams.

F.1.5. Overstaffing. On the other side of the staffing mis-
match, consider overstaffing. Although hiring additional
nurses can never decrease overstaffing, we show that our
Delta Coverage program significantly mitigates the increase in
overstaffing from additional hires. Consider again the sce-
nario where travel nurses were hired instead of Delta Cover-
age nurses. First, note that incidents of overstaffing when
travel nurses are on shift are particularly undesirable. Travel
nurses cannot be low censused (i.e., the nurse is sent home if
not needed) and must be paid for a full shift regardless of
need. This results in excessive and unnecessary costs given



Downloaded from informs.org by [139.179.182.186] on 14 October 2025, at 11:38 . For personal use only, al rights reserved.

Helm et al.: Delta Coverage: Analytics Journey for a Novel Nurse Deployment Program
452 INFORMS Journal on Applied Analytics, 2024, vol. 54, no. 5, pp. 431-454, © 2024 INFORMS

the high salaries that travel nurses command, and it often
results in full-time nurses being sent home instead. This high-
lights another major benefit of the Delta Coverage program;
comparing the overstaffing associated with hiring travel
nurses versus Delta Coverage nurses, we find that the DC
program has significantly lower overstaffing during the
course of the pilot. Specifically, there were 29 fewer shifts in
which overstaffing occurred during the pilot compared with
the number of overstaffed shifts that would have occurred if
travel nurses had been hired instead of Delta Coverage
nurses, which projects to 289 fewer overstaffed shifts a year
and a 43% smaller increase in overstaffing relative to having
hired non-DC nurses instead.

F.2. Delta Coverage Nurse Work Variety, Stability,

and Equity

To measure equity in terms of how Delta Coverage nurses are
used in the program, we measure the proportion of time
(shifts) that each nurse spends at a remote facility. Of interest
is that (1) each Delta Coverage nurse has a sufficient variety
of working locations; this is based on the feedback from these
nurses that one of the reasons they joined the program is that
they want to travel, but they also want the stability of work-
ing in their home hospitals. Additionally, (2) Delta Coverage
nurses should have a similar amount of variety in their work-
ing locations to ensure that the travel regime is fair to all these
nurses.

Figure F.1 provides a high-level visual summary of Delta
Coverage nurses’ work schedules. For the 10 individual
nurses participating the six-week pilot, Figure F.1 shows the
percentage of shifts that each worked at various hospitals.
Some nurses worked in a pod of three hospitals, and others
worked in a pod of two hospitals.

In general, we see a pattern that shows that the nurses have
fairly similar distributions of work locations (we compare
nurses in three-hospital pods separately from nurses in two-
hospital pods). Recall that we do not need the shifts to be
evenly distributed among hospitals but rather, that all nurses
have a similar distribution of shifts across hospitals. As a final
note, Nurse 10 was certified in one of three acuity levels,
which somewhat restricted that nurse’s transfer capability.

Additionally, we capture (1) the variety of opportunity
(whether the nurses worked at each hospital often enough to
earn a travel premium), (2) the stability of each nurse’s sched-
ule from week to week, and (3) the equity among Delta Cov-
erage nurses for measures (1) and (2). We summarize these
metrics in Table 1. We now explain more details about the cal-
culation of these metrics. To measure work variety and
equity, we use the Gini coefficient, which is commonly used as
a measure of dispersion in many fields. The Gini coefficient
lies between zero and one, with zero representing perfect
equality and one representing perfect inequality. In our con-
text, a Gini coefficient of zero in terms of work variety means
that the nurses spend an equal amount of time at each hospi-
tal in their catchment area. Similarly, if the nurse spends time
in only one hospital, the Gini coefficient would be one. We do
not set a target on work variety but rather, a target such that
all the nurses have similar work variety because traveling to
different hospitals is the only difference between a DC nurse
and a resource nurse.

When discussing equity in the subsequent paragraphs, a
general rule of thumb is that a Gini coefficient of 0.3-0.4 is
considered fair and that a Gini coefficient of 0.2-0.3 is consid-
ered very fair. With respect to equity between nurses, a smal-
ler Gini coefficient means that an individual nurse’s work
variety and schedule stability are close to each other, indicat-
ing a fair implementation of the program. We use this inter-
pretation of the Gini coefficient to evaluate our metrics as
well. To measure stability, we calculate the coefficient of vari-
ation (CV) of each nurse’s work variety from week to week.
Specifically, we calculate the number of different hospitals at
which each nurse worked in a week. We then calculate the
mean and standard deviation of the weekly number of differ-
ent hospitals worked across the five weeks and divide the
standard deviation by the mean to obtain the CV.

F.2.1. Work Variety and Equity. Work variety is measured
at the individual level by obtaining one Gini coefficient for
each individual for the measurement period (May to June).
The average work variety (mean of the Gini coefficient) across
all Delta Coverage nurses is 0.42. Note that Nurse 10 was cer-
tified in only one acuity and thus, could not fill all nursing

Figure F.1. (Color online) The Pie Charts Show the Fraction of Shifts Worked at Each Nurse Location for the 10 Delta Coverage
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roles. Thus, we remove this nurse when calculating the equity
in work variety. After doing so, the equity in work variety
measured across Delta Coverage nurses has a Gini coefficient
of 0.3, which is very fair.

F.2.2. Schedule Stability and Equity. To measure the sta-
bility of a Delta Coverage nurse’s schedule, we calculate the
variability in work variety from week to week. Quantita-
tively, for each nurse, we first calculate work variety for each
week using the Gini method. Next, for each nurse, we calcu-
late the CV of that nurse’s work variety over the six-week
horizon in the pilot. The CV is the standard deviation of work
variety over the course of the pilot divided by the mean,
which is a common normalized measure of variability. The
smaller the CV, the less variable the nurse’s work variety is.
We adopt the convention that CV <1 is considered to be low
variability and that CV > 1 is considered to be high variability.
Considering all nurses, the average CV of work variety is
0.41, and the equity (the Gini coefficient of the CV) is 0.31,
indicating that the program is creating schedules that are sta-
ble, consistent, and fair across Delta Coverage nurses.

F.2.3. Delta Coverage Hospital Equity. To measure the
fairness of the allocation of Delta Coverage nurses to hospitals,
we again use the Gini coefficient. After removing the single
outlier hospital (Bloomington Hospital (BTN)), which main-
tains the concept of fairness because BTN was well staffed dur-
ing the pilot period, the Gini coefficient was 0.29, indicating a
very fair allocation.

In summary, the previous analyses have demonstrated that
the pilot not only achieved significant reductions in under-
staffing and overstaffing but also created nurse schedules
and allocated Delta Coverage resources in a desirable and
equitable manner.

F.3. Practical Challenges Encountered in the Pilot and
Lessons Learned

F.3.1. Nursing Crisis. The greatest challenge to the Delta
Coverage program was, ironically, the primary impetus for the
program itself: the nursing shortage crisis. By October 2021, we
had a fully functional prototype of the dashboard, which we
completed testing in April 2022. However, the pilot launch
was delayed until May 2023 because of the unprecedented
severity and duration of the nursing shortage crisis in Indiana.
During this period, the National Guard had to be called in mul-
tiple times to support hospital staffing across the state.

Although the delay in the pilot launch seemed ironic, it is
crucial to recognize that the crisis highlighted the urgent
need for innovative solutions, like the Delta Coverage pro-
gram. The gap between the prototype development and the
pilot launch provided the opportunity for us to refine and
strengthen the supporting analytics theory. Additionally,
the DC analytics suite proved its value during the crisis, pro-
viding critical insights and support to IUH in managing the
nursing shortage at its hospitals. This demonstrated the
suite’s versatility and effectiveness, even in addressing chal-
lenges beyond the DC program’s original scope.

Despite the challenges posed by the nursing shortage
crisis, the collaboration between the academic team and
IUH remained strong. The continuous communication and
development efforts allowed us to further enhance the DC

program’s capabilities and ensure its readiness for the pilot.
The experience gained during the crisis response has
enriched our understanding of the healthcare environment
and reaffirmed the value and potential impact of the Delta
Coverage program in effectively managing nurse shortages
in the future. In January 2023, the team decided to restart
planning for the pilot launch, focusing on two major mile-
stones: (1) relaunching and retesting the analytics suite and
(2) recruiting nurses for the Delta Coverage program.

F.3.2. DC Analytics Suite. When we began the relaunch,
we encountered several changes in the underlying data sys-
tems, including modifications to enterprise data systems that
impacted our data pipeline, acuity reclassification in differ-
ent units, and the second-largest hospital at IUH not yet rein-
tegrated into the central data warehouse after relocating to
a new building. Despite identifying and addressing these
issues, the forecast and optimization continued to perform
well after a year of dormancy. Another significant data
challenge we faced, common to many hospitals developing
data-driven operational analytics, was that hospital data are
primarily designed for billing and finance. This required us
to implement major work-arounds to ensure accurate opera-
tional conclusions. For example, we had to use patient loca-
tion data (the location at which the patient is billed) to
construct hospital occupancy data. However, we discovered
a double-counting issue; numerous patients were mistakenly
counted in two places because the inpatient beds were being
held for them while they were in surgery or recovery rooms.
Our team addressed these challenges through advanced
planning, anticipating future transfers in the hospital, and
incorporating an automated change detection mechanism.

F.3.3. Recruitment. As we mentioned, one of the major
challenges and milestones was recruiting nurses for this
novel program. This involved both ingenuity and due dili-
gence from the nursing organization management as well as
scenario testing and operational design using the analytics
engine. Despite the well-planned and well-executed iterative
design process, we were unable to recruit a sufficient num-
ber of qualified nurses on our first attempt. In the subsequent
redesign, we were able to use the tunable model hyperpara-
meters to include additional desirable features that various
nursing teams mentioned in a second iterative process.
This involved identifying different design specifications that
would make the program more attractive to DC nurses and
features that ensured fairness among hospitals and among
DC nurses. Another feedback mechanism involved running
information sessions for DC-eligible nurses. Other design
changes tested in the analytics suite included partitioning
the network into smaller travel zones (or pods), each with its
own set of DC nurses; enforcing limits on the probabilities
that a nurse would be deployed from the on-call list; adjust-
ing the length of travel secondments (the number of shifts
a Delta Coverage nurse works at a remote location); limit-
ing the fraction of shifts that a DC nurse works at a remote
hospital; and ensuring that the fraction of DC shifts allo-
cated to each participating hospital was fair. The second
wave of recruitment proved to be a success thanks to the
implementation of design changes tested in the analyt-
ics suite.



Downloaded from informs.org by [139.179.182.186] on 14 October 2025, at 11:38 . For personal use only, al rights reserved.

Helm et al.: Delta Coverage: Analytics Journey for a Novel Nurse Deployment Program
454 INFORMS Journal on Applied Analytics, 2024, vol. 54, no. 5, pp. 431-454, © 2024 INFORMS

References

Aiken LH, Sloane DM, Bruyneel L, Van den Heede K, Griffiths P,
Busse R, Diomidous M, et al. (2014) Nurse staffing and education
and hospital mortality in nine European countries: A retrospec-
tive observational study. Lancet 383(9931):1824-1830.

Allen LJS (2008) An Introduction to Stochastic Epidemic Models (Springer,
Berlin), 81-130.

Allen L] (2017) A primer on stochastic epidemic models: Formulation,
numerical simulation, and analysis. Infectious Disease Model. 2(2):
v128-142.

American Hospital Association (2022) Massive growth in expenses
and rising inflation fuel continued financial challenges for Ameri-
ca’s hospitals and health systems. Technical report, American
Hospital Association, Washington, DC.

Anderson D, Bjarnadottir MV, Nenova Z (2022) Machine learning in
healthcare: Operational and financial impact. Babich V, Birge JR,
Hilary G, eds. Innovative Technology at the Interface of Finance and
Operations, Springer Series in Supply Chain Management, vol. 11
(Springer, Cham, Switzerland), 153-174.

Ban GY, Rudin C (2019) The big data newsvendor: Practical insights
from machine learning. Oper. Res. 67(1):90-108.

Blegen MA, Goode CJ, Spetz ], Vaughn T, Park SH (2011) Nurse staff-
ing effects on patient outcomes: Safety-net and non-safety-net
hospitals. Medical Care 49(4):406—414.

Caflisch RE (1998) Monte Carlo and quasi-Monte Carlo methods. Acta
Numerica 7:1-49.

Calatayud J, Jornet M, Mateu ] (2023) Spatio-temporal stochastic dif-
ferential equations for crime incidence modeling. Stochastic Envi-
ron. Res. Risk Assessment 37(5):1839-1854.

Chan T, Park J, Pogacar F, Sarhangian V, Hellsten E, Razak F, Verma A
(2021) Optimizing inter-hospital patient transfer decisions during a
pandemic: A queueing network approach. Preprint, submitted
December 21, http: // dx.doi.org/10.2139/ssrn.3975839.

Cox JC, Ingersoll JE Jr, Ross SA (2005) A theory of the term structure
of interest rates. Theory of Valuation (World Scientific, Hacken-
sack, NJ), 129-164.

Desai A, Freeman C, Wang Z, Beaver I (2021) Timevae: A variational
auto-encoder for multivariate time series generation. Preprint,
submitted November 15, https: //arxiv.org/abs/2111.08095.

Esteban C, Hyland SL, Rétsch G (2017) Real-valued (medical) time
series generation with recurrent conditional GANs. Preprint, sub-
mitted June 8, https: //arxiv.org/abs/1706.02633.

Flinkman M, Leino-Kilpi H, Salantera S (2010) Nurses’ intention to
leave the profession: Integrative review. |. Adv. Nursing 66(7):
1422-1434.

Furukawa MF, Machta RM, Barrett KA, Jones DJ, Shortell SM, Scanlon
DP, Lewis VA, O’'Malley AJ, Meara ER, Rich EC (2020) Land-
scape of health systems in the united states. Medical Care Res. Rev.
77(4):357-366.

Green LV, Kolesar PJ, Whitt W (2007) Coping with time-varying
demand when setting staffing requirements for a service system.
Production Oper. Management 16(1):13-39.

Griffiths P, Saville C, Ball J, Jones J, Pattison N, Monks T; Safer Nurs-
ing Care Study Group (2020) Performance of the Safer Nursing
Care Tool to measure nurse staffing requirements in acute hospi-
tals: A multicentre observational study. BMJ Open 10:e035828.

Hu Y, Chan CW, Dong ] (2024) Prediction-driven surge planning
with application in the emergency department. Management
Sci., ePub ahead of print May 24, https://doi.org/10.1287/
mnsc.2021.02781.

Li T, Wu C, Shi P, Wang X (2024) Cumulative difference learning
VAE for time-series with temporally correlated inflow-outflow.

Proc. AAAI Conf. Artificial Intelligence, vol. 38, No. 12 (AAAI Press,
Palo Alto, CA), 13619-13627.

Mogren O (2016) C-RNN-GAN: Continuous recurrent neural networks
with adversarial training. Preprint, submitted November 29,
https://arxiv.org/abs/1611.09904.

Owen AB (1998) Latin supercube sampling for very high-dimensional
simulations. ACM Trans. Model. Comput. Simulation 8(1):71-102.

Parker F, Sawczuk H, Ganjkhanloo F, Ahmadi F, Ghobadi K (2020)
Optimal resource and demand redistribution for healthcare
systems under stress from Covid-19. Preprint, submitted Novem-
ber 6, https: //arxiv.org/abs/2011.03528.

Saville CE, Griffiths P, Ball JE, Monks T (2019) How many nurses
do we need? A review and discussion of operational research
techniques applied to nurse staffing. Internat. |. Nursing Stud.
97:7-13.

Shi P, Helm JE, Chen C, Lim ], Parker RP, Tinsley T, Cecil ] (2023)
Operations (management) warp speed: Rapid deployment of
hospital-focused predictive /prescriptive analytics for the Covid-
19 pandemic. Production Oper. Management 32(5):1433-1452.

Spetz J (2021) Leveraging big data to guide better nurse staffing strate-
gies. BM] Quality Safety 30(1):1-3.

Yoon J, Jarrett D, Van der Schaar M (2019) Time-series generative
adversarial networks. Wallach H, Larochelle H, Beygelzimer A,
d’Alché-Buc F, Fox E, Garnett R, eds. Proc. 33rd Internat. Conf.
Neural Inform. Processing Systems (Curran Associates Inc., Red
Hook, NY).

Zlotnik A, Gallardo-Antolin A, Alfaro MC, Pérez MCP, Martinez JMM
(2015) Emergency department visit forecasting and dynamic nurs-
ing staff allocation using machine learning techniques with read-
ily available open-source software. Comput. Informatics Nursing
33(8):368-377.

Jonathan E. Helm is a professor at Indiana University’s Kelley
School of Business. He is also the research co-director for the Center
for the Business of Life Sciences. With experience at GE Healthcare
and Mayo Clinic, he was a National Science Foundation Fellow for
three years. His research has led to practical implementations,
including a census forecasting system in Singapore, readmission
reduction analytics in Indiana, and predictive analytics at Indiana
University Health.

Pengyi Shi is an associate professor at the Mitchell E. Daniels, Jr.
School of Business, Purdue University. Her research focuses on
data-driven modeling and decision-making in healthcare and ser-
vice operations. She has collaborated with major healthcare organi-
zations in the United States, Singapore, and China. Her work has
received multiple awards, including the IISE Outstanding Innova-
tion in Service Systems Engineering Award in 2023 and the MSOM
Responsible Research in OM Award in 2021.

Mary Drewes is the associate chief nurse executive at Indiana
University Health, overseeing nursing operations for 16 hospitals
and more than 9,000 nurses. She collaborates with senior executives
and system leaders in information technology, finance, pharmacy,
regulatory, quality and safety, and supply chain. She effectively
manages cross-functional teams to address complex business chal-
lenges and serves on multiple boards to represent nurses.

Jacob Cecil is a senior data analyst at IU Health. He uses
advanced analytical techniques to extract insights from complex data-
sets, enhancing healthcare delivery and patient experience. He has col-
laborated on developing a Python-based decision support model for
staff placements. He also contributed to the Google Health Data
Engine pilot project at [U Health, a cloud-based platform for real-time
healthcare data analysis.


http://dx.doi.org/10.2139/ssrn.3975839
https://arxiv.org/abs/2111.08095
https://arxiv.org/abs/1706.02633
https://doi.org/10.1287/mnsc.2021.02781
https://doi.org/10.1287/mnsc.2021.02781
https://arxiv.org/abs/1611.09904
https://arxiv.org/abs/2011.03528

	Delta Coverage: The Analytics Journey to Implement a Novel Nurse Deployment Program
	Introduction
	Delta Coverage Analytics Suite Details and Challenges
	Literature Review
	Contributions
	Generative Modeling to Predict Correlated Hospital Occupancies
	Advantages over Other Machine Learning Models and Numerical Performance
	Stochastic Optimization for Network Decision Making
	Integration of Predictive and Prescriptive Components
	Implementation of Delta Coverage and Practical Challenges
	Conclusion


