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IBM Systems and Technology Group uses operations research models and methods extensively for solving
large-scale supply chain optimization (SCO) problems for planning its extended enterprise semiconductor sup-
ply chain. The large-scale nature of these problems necessitates the use of computationally efficient solution
methods. However, the complexity of the models makes developing robust solution methods a challenge. We
developed a mixed-integer programming (MIP) model and supporting heuristics for optimizing IBM’s semicon-
ductor supply chain. We designed three heuristics, driven by practical applications, for capturing the discrete
aspects of the MIP. We leverage the model structure to overcome computational hurdles resulting from the
large-scale problem. IBM uses the model and method daily for operational and strategic planning decisions and

has saved substantial costs.
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emiconductor manufacturing, the epitome of high-
Stechnology manufacturing, requires substantial
capital investments, often measured in billions of dol-
lars. Because of high investment costs for facilities,
semiconductor manufacturers often face the possi-
bility of limited resources and multiple bottlenecks
throughout the supply chain. To cope with limited
capacity and long manufacturing lead times, they
must allocate assets to customer demand to achieve
optimal production plans, coordinate interplant logis-
tics, and high-quality customer service. Supply chain
optimization (SCO) is a key to profitability in the
semiconductor industry. Systems that support SCO
are considered business-critical and must incorporate
a broad range of planning criteria and constraints.
IBM Systems and Technology Group uses SCO mod-
els to solve large-scale supply chain planning prob-
lems (Lyon et al. 2001).

Firms use SCO models to control the activities of an
extended enterprise, such as sourcing among multiple
plants, interplant shipping logistics, and developing
production plans for manufacturing plants within the
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enterprise. The time horizons for such planning mod-
els range from several months to many years, depend-
ing on the decisions they are intended to support.
Their uses include controlling daily production sched-
ules and coordinating targets that factory execution
systems must meet. For some applications, a hori-
zon of several months, composed of daily planning
periods, may be appropriate. For others, where long-
range strategic decisions are called for (whether to
build a new facility or make a major investment in
capacity), a time frame of five or more years, with
weekly or monthly planning periods, may be appro-
priate. Whatever the types of application, SCO models
must take into account a range of criteria if they are
to be useful.

Complex supply chains are commonly modeled as
linear programs (LPs), which can effectively trade off
a broad range of criteria. However, to model semi-
conductor supply chains accurately, one must include
discrete aspects of decision making, which requires
solving a mixed-integer program (MIP). The cor-
responding MIP is NP-complete. Therefore, general
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methods of solution (for example, branch-and-bound,
branch-and-cut) are practical only for fairly small
problems or special classes of problems. For large-
scale problems, one must take advantage of properties
of the problem structure. Furthermore, because com-
puting optimal solutions is not possible, the focus is
on developing fast heuristics that can find good feasi-
ble solutions in reasonable computation time. Devel-
oping appropriate heuristics is especially difficult in a
production environment; such an environment oper-
ates according to rigorous scheduling requirements
and demands reasonable and reliable computation
times.

We designed, developed, and deployed several
heuristic methods for solving an SCO model as part
of an advanced planning system (APS) for the cen-
tralized planning of IBM’s Systems and Technol-
ogy Group’s semiconductor supply chain. Here we
describe some important developments in supply
chain optimization at IBM since the 2000 Edelman
competition, in particular, the development of a MIP
model and solution methodology.

Semiconductor Industry Background

Semiconductor manufacturing involves a range of
activities, including everything from growing silicon
ingots (the source of silicon wafers upon which inte-
grated circuits are grown) to the actual placement
and soldering of finished chips to a printed circuit
board. Initially, raw wafers, cut from a silicon ingot,
are processed through a specific sequence of work
centers. The goal of wafer fabrication is to build a set
of devices (integrated circuits) on the surface of the
silicon wafer according to a specified circuit design.
At a high level, this process consists of repetitions
of four essential steps: deposition, photolithography,
etching, and ion implantation. The first three steps
are the means by which material is deposited on the
wafer surface (deposition), patterned by protecting
parts of the surface that correspond to circuit struc-
tures (photolithography), and processed to remove
the unprotected material (etching). The last step, ion
implantation, is the means by which the conductive
properties of the silicon wafer are modified, which is
a key to building circuit components, such as tran-
sistors. Together these steps form the manufactur-
ing process for patterning the surface of the wafer

with materials that have special dielectric properties
(conductors, insulators) according to precise circuit-
design specifications. The steps are repeated many
times to build up a sequence of layers; the layers
correspond to building circuit components (diodes,
resistors, transistors), and subsequent layers corre-
spond to building metal interconnections between the
circuit components. The finished devices are three-
dimensional structures built on the two-dimensional
surface of the wafer. A single device may have mil-
lions of circuit elements with line widths measured in
nanometers.

Once devices have been built on a wafer, they are
tested and their quality attributes (speed, power con-
sumption) are recorded for later reference. Wafers are
then diced and sorted into individual devices and
subsequently bonded to a substrate and packaged to
assemble a module. The modules, which are further
tested to determine electromagnetic and thermal char-
acteristics, are eventually assembled onto printed cir-
cuit boards to make cards. Finally, the cards are tested,
and those that pass inspection are eventually used to
assemble a wide range of finished electronic products
(for example, servers, cell phones, and CD players).
From the point of view of semiconductor manufac-
turing, the modules and cards are, by and large, the
finished products taken to market. However, depend-
ing on the particular markets the firm is engaged in,
there may also be demand for finished wafers.

Modern wafer-fabrication facilities are designed as
large clean rooms with central corridors lined with
manufacturing bays on both sides: photolithography
bays, diffusion bays, deposition bays, plasma etch-
ing bays, and bays for other critical manufacturing
operations. Wafers are manufactured in discrete lots,
which travel between bays in sealed wafer carriers.
Because of the tool setups needed for processing lots
in various operations, wafer carriers are normally
required to be full. Thus, production starts must be
in integer multiples of the carrier size. Within cer-
tain manufacturing bays, there are batch constraints
that determine the number of wafer lots that can be
processed at a time. For example, a diffusion bay
typically contains several vertical furnaces that are
used at various stages in the manufacturing process
(for example, in annealing). These furnaces can typi-
cally hold 100 to 200 wafers at a time, and planners
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impose a minimum production start quantity to avoid
low utilization of furnaces. These container-size and
batch-size constraints are lot-size constraints.

To create manageable SCO models, we introduce
some abstraction from the complex routing of lots
through the production process. We project the con-
tinuous process onto a discrete set of part numbers
(PNs). We use a bill of material (BOM) that specifies
the components of each PN to generate a graph repre-
sentation of the components needed for finished prod-
ucts (Figure 1). The fabrication process starts with raw
wafers, which are processed into front-end-of-the-line
(FEOL) wafers, which are wafers with semifinished
devices that have circuit components not yet con-
nected by metal leads. The FEOL wafers are then used

Finished mod. X Finished mod. Y

Sort A Sort B

60%

40% 30%

50%

Module 1 Module 2

Device (medium)

Device (fast)

60%

30%

Device (untested)
=~
= BOM
Wafer BEOL
=~
= Alternate BOM
Wafer FEOL
=~
= Binning
Raw wafer
eseee P = Substitution

to build back-end-of-the-line (BEOL) wafers in which
the circuits are completed by introducing several lay-
ers of metal interconnections. After further process-
ing, the devices are tested and sorted (or binned) into
categories, such as fast, medium, and slow. The distri-
bution of attributes results from random variation in
the manufacturing process. At this stage, high-grade
devices (for example, faster) can be substituted for
low-grade devices (for example, medium or slower).

The facility packages devices to assemble modules,
which may include multiple devices (multichip mod-
ules), and there may be multiple assembly processes
that could be used within a given packaging facil-
ity. The finished modules are tested to determine
whether the devices have successfully negotiated the

Finished mod. Z Finished mod. W

N

SortC

70%

20% 30%

Module 3

Device (slow)

10%

Other BEOL wafers

Other FEOL wafers

Figure 1: For semiconductor production, material flows throughout the supply chain from raw silicon wafers (bot-
tom) to finished modules (top). For a given module—X, Y, Z, or W—there may bhe multiple assembly processes;
for example, module Y could be built using Sort A or Sort B.
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packaging process. This results in a second round of
binning. Final processing involves capping modules
and assigning customer PNs and other relevant pack-
aging information. For a given module, there may be
multiple assembly processes (Figure 1). Two building
processes may be differentiated by processing costs
and may require different capacity resources. Further
assembly may be carried out to create printed circuit
boards.

In general, large semiconductor manufacturing
firms have many facilities and outsource some oper-
ations. IBM has multiple semiconductor fabrication
facilities, test facilities, and packaging facilities. The
SCO model must link the optimization of manufac-
turing plans at individual sites via interplant logistics
that describe the flow of material among facilities. It
must also consider such factors as capacity allocation
and utilization of work-in-process (WIP) inventory.
Furthermore, because multiple sites in the supply
chain may perform overlapping functions, the model
must balance the use of resources at the various sites.

Planners of semiconductor supply chains have tra-
ditionally relied on software systems based on OR/
MS methods. For instance, at individual manufac-
turing sites, they often use material-requirements-
planning (MRP) systems to develop uncapacitated
plans for meeting the sites” demands, demand-man-
agement (DM) tools to manage forecasts of enter-
prisewide demand at different hierarchical levels
within the organization, and available-to-promise
(ATP) applications to commit supply to orders as they
are booked in real time. More advanced software tools
introduce capacitation into the planning process and
are based on heuristics for rationing finite capacity or
formal mathematical programming models for deter-
mining optimal solutions. IBM Systems and Technol-
ogy Group has developed a complete suite of these
tools.

Related Literature

Researchers have explored several supply chain plan-
ning problems, including some directly related to
our modeling and methodology. Uzsoy et al. (1992)
explored production planning, and Uzsoy et al. (1994)
surveyed shop-floor scheduling in the semiconductor
industry. They focused on studies of a single plant

rather than central planning of an extended enter-
prise. Tayur et al. (1998) reviewed the general supply
chain literature. Arntzen et al. (1995) described appli-
cations of supply chain management at Digital Equip-
ment Corporation. Leachman et al. (1996) described
a comprehensive system for production planning
at Harris Semiconductor Corporation. Camm et al.
(1997) discussed supply chain restructuring decisions
in designing product sourcing and distribution sys-
tems. Bermon and Hood (1999) described a model for
planning capacity at a semiconductor plant. Lin et al.
(2000) described a case study of supply chain plan-
ning in IBM’s Personal Systems Group.

Lot sizing is a particularly important issue in plan-
ning semiconductor supply chains. Raw wafers, the
initial material released into a wafer-fabrication facil-
ity, are issued in discrete lot sizes (typically 25 wafers
per lot). Furthermore, there are many batch tools on
the fab floor; batch furnaces, for example, may pro-
cess between 100 and 200 wafers at a time. The intro-
duction of lot-size constraints results in a MIP in
which production starts are constrained to be at least
a certain minimum quantity and must be released in
discrete multiples of the allowable lot size. Treatment
of lot sizes as decision variables, that is, the a priori
determination of appropriate lot sizes, has attracted
much attention. For the simple single-product prob-
lem, Wagner and Whitin (1958) developed a dynamic
programming method. Kuik et al. (1994) provided
detailed survey of lot-sizing models. More practical
multiproduct problems have been studied recently by
Belvaux and Wolsey (2000), who described a branch-
and-cut approach based on combining several types
of cuts. Belvaux and Wolsey (2001) described methods
for reformulating lot-sizing problems to achieve sub-
stantially improved computation times. All of these
authors treated the discrete decision of whether or not
to produce in a given time period. However, none of
them considered our situation, in which a production
release in a given time period must be a multiple of
a predetermined lot size.

Demand prioritization is another important aspect
of supply chain planning. In general, LP models
are not well suited to preemptive demand prioriti-
zation. Leachman et al. (1996) developed a method
for sequentially considering demand classes, one at a
time, with constraints added successively to guarantee
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that lower-priority classes do not steal from higher-
priority ones. We developed a multistage algorithm to
handle preemption for multiple demand classes at a
time within our model. Our approach provides solu-
tions that reflect preemptive prioritiation, and it is
computationally efficient.

The Mixed-Integer Programming
Model

In 1995, IBM decided to enter the OEM market and
move away from being a captive supplier of micro-
electronics products. As part of this plan, it central-
ized supply chain planning. In support of the plan,
our team at IBM developed OR-based software solu-
tions, including a central planning engine (CPE) to
balance the supply chain’s resources against a central
statement of semiconductor demand. We designed the
CPE to balance the need to handle extremely large
models against the need for high-quality solutions in
a timely manner by simultaneously using fast rules-
based heuristics for standard material flows and a
MIP model for complex material flows. The CPE auto-
matically partitions the semiconductor supply chain
into those sections that may be solved well with
heuristics and sections better suited to formal mathe-
matical programming (Hegde et al. 2004).

The MIP model is formulated as a cost-minimiza-
tion problem subject to a set of constraints describ-
ing material flows and other aspects of the supply
chain (appendix). The objective function includes sev-
eral decision variables and associated cost penalties,
with provisions for material substitutions, interplant
shipments, customer shipments, inventory holding,
and variable costs associated with production starts.
The model includes both soft and hard capacity con-
straints; the soft constraints may be violated subject
to a cost penalty, whereas the hard constraints must
be satisfied. There are variables in the objective func-
tion that are related to penalties for violating the
soft constraints. The soft capacity constraints relate
to model situations in which nominal planned capac-
ity may be increased at a cost (for example, by out-
sourcing, or short-term leasing of tools). We assume
that demand that cannot be satisfied on time is
back-ordered, and costs are accrued in each planning
period in which that takes place. The core set of model
constraints includes back-order-balance constraints,

inventory-balance constraints, capacity constraints,
sourcing constraints, and discrete lot-size constraints.
The decision variables include P = production starts,
I =inventory, F =shipments, T = internal shipments,
and L = material substitutions.

Constraints (i) of the MIP model represent back-
order balancing from one planning period to the next,
given the shipment decision variables, F,,,,, and new
demand arising in the period. If demand in a plan-
ning period for a particular PN, customer location,
and demand class exceeds the quantity shipped, then
the excess results in an increased back order and
an associated cost. Back orders accumulate over time
until sufficient shipments can be made to cover them.
There may be multiple locations that can ship to cover
a given demand.

Constraints (ii) of the MIP model represent the
inventory balance of material flows of PNs between
stocking locations in the supply chain as well as
through planning periods in the planning horizon.
These constraints form the backbone of the net-
work of stocking points. They keep track of the move-
ments of assets via interplant shipments and the
movements of WIP between stocking points within
a plant as a result of production. They also reflect
the movement of material along multiple produc-
tion paths (Figure 1). Flows of production starts from
one stocking point to the next are governed by yield
losses, Y., which define the quantity of material
coming to stock, and associated cycle times, ct,,,.,
which define the time from production start to pro-
duction stock. The available paths represented by
assembly component relationships within a plant are
defined via BOM information; they include multiple
processes for building the same PN and the binning
of PNs into multiple PNs (for example, fast, medium,
and slow). The inventory-balance constraints also
define the feasible flow of materials based on allow-
able material substitutions.

Constraints (iii) of the MIP model represent restric-
tions on capacity that limit production starts for par-
ticular PNs at a given plant in each planning period,
based on available work-center capacity for the vari-
ous resources in the supply chain. These constraints
may relate to any type of finite capacity that must be
allocated to create feasible production plans and may
include tools for wafer fabrication, testing, and assem-
bly. In general, mapping PNs to capacity resources
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may involve complex many-to-many relationships
that couple otherwise distinct product types. Planners
can adjust the constraints to also capture complexi-
ties pertaining to the timing of capacity utilization.
For instance, they can use time offsets in which a par-
ticular PN uses capacity at some future time after a
production start. Also, in some cases in which there
are secondary opportunities (for example, outsourc-
ing), capacity constraints may be defined with a slack
variable (soft constraint) that allows for violation of
a constraint subject to a cost penalty in the objective
function.

Constraints (iv) of the MIP model, the sourcing con-
straints, provide balance across the supply chain for
those items that can be produced at multiple locations
or procured from multiple suppliers. For instance,
multiple wafer-fabrication facilities may produce the
same devices, or multiple test facilities may test parts.
In such cases, planners must decide on sources based
on strategic objectives instead of breaking ties arbitrar-
ily. These soft constraints, with associated slack vari-
ables S,.,, and G,,,,, indicate target shipping quantities
to be supplied by sourcing locations (for example, a
70 to 30 percent split between two locations). Planners
use the constraints to apply sourcing rules within the
supply chain (internal shipments) as well as shipment
of finished goods to customers.

Constraints (v) of the MIP model are discrete lot-
size constraints that require that production starts cor-
respond to rules governing allowable start quantities
based on user-defined parameters. These rules define
the minimum and multiple quantities allowed in pro-
duction releases. The minimum quantities may corre-
spond to policy-based constraints that limit the costs
associated with setups, whereas the multiple quanti-
ties impose the requirement that production starts be
in multiples of container size. For instance, because
wafers are processed in carriers that hold 25 wafers,
a rule that requires a minimum of 100 wafer starts
would have allowable quantities in the set {100+ 25n,
n=0,1,2,...}.

Solution Methodology and
Implementation

IBM Systems and Technology Group has a long his-
tory of using advanced planning systems, including

MRP and heuristic-based capacitated planning tools.
Since 2000, the semiconductor CPE has under-
gone continuous improvement, with many functional
enhancements that capture new aspects of the busi-
ness environment as well as substantial performance
improvements for solving large-scale SCO models. We
implemented our new MIP-based functionality in a
controlled fashion, asking users to test new features
systematically, to provide feedback for improvements,
and subsequently to approve the new functions for
deployment in production. We will describe three
examples of heuristic methods that were developed to
facilitate the real-world application of the MIP model.

LP Presolve Heuristic

The problems encountered in practice may have mil-
lions of variables and constraints. Therefore, solving
even the LP relaxation of the MIP can be challenging.
The group’s first implementation of the model was an
LP that did not include discrete lot-sizing constraints.
We initially applied the model to small sections of the
supply chain that were particularly difficult to sched-
ule with rules-based heuristics. This initial implemen-
tation resulted in problem sizes for which generic
application of a commercial LP solver was sufficient.
However, over time as we added new constraints to
enrich the model and additional sections of the sup-
ply chain, the computation times became unaccept-
ably long.

To solve the very large-scale problems that now
arise in practice, we must take advantage of the prob-
lem structure. In semiconductor supply chain models,
different product groups often share similar capac-
ities and hence constraints; similarly, multisourcing
constraints link production across multiple facilities.
Therefore, we typically cannot readily decompose
the LP model. By relaxing some of the linking con-
straints, we can create a decomposable problem and
then apply methods like Dantzig and Wolfe’s (1960)
decomposition. However, in experimenting with such
methods for these types of LP models, we found
that they are typically slow to converge. One of the
approaches we have developed for solving large-scale
models employs a decomposition-based heuristic as
a presolve stage to get a near-optimal solution before
obtaining a final one. This method exploits the supply
chain structure of the MIP model.
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Our method involves first acquiring a feasible solu-
tion. A feasible solution can be obtained by setting
to zero all variables except (a) the back-order vari-
ables, By, (which we set assuming that all demand
is back-ordered in each period) and (b) the slack vari-
ables for soft constraints, such as S,,,, and G,,,,. This
allows fast generation of a feasible solution. Given a
feasible solution, the presolve method uses a heuristic
based on selectively fixing variables based on column
pricing information. Initially, all columns are priced
out and sorted based on the pricing. Those within
a selected percentage of the best potential columns
remain unfixed (for example, the top 10 percent),
whereas the remaining ones are fixed. We presolve
to reduce the problem size substantially and then
solve the LP using the primal simplex method. Once
we determine the optimal solution for the reduced
subproblem, we unfix variables, recompute the col-
umn prices, select a new set of variables, and fix the
remaining unselected variables. As before, this new
model is presolved and then solved via the simplex
method. The procedure continues iteratively until (a)
the relative improvement in the objective function
from one iteration to the next falls below a certain
threshold or (b) a maximum number of iterations is
reached. Subsequent to meeting the stopping crite-
ria for the presolve heuristic, we solve the complete
model to optimality with the advanced basis.

For the presolve heuristic, we experimented to de-
termine the appropriate number of target columns to
choose in each iteration as well as the maximum num-
ber of iterations. Once calibrated, the heuristic works
well (and is quite robust) for SCO models because of
the model structure. Large portions of these types of
SCO models are made up of long sections of straight
BOM, with a limited number of alternate manufac-
turing processes for building a given assembly PN.
As a result, explicitly fixing some decision variables
based on column prices and subsequently presolving
the model result in many decision variables over sev-
eral time periods being removed, greatly reducing the
model size at each iteration.

The presolve heuristic reduces computation time.
Instead of solving one instance of the model each
day, users can now solve several instances per day.
They use our model for what-if analysis and try-for-
fit applications as well as for daily planning. They

analyze the solution to one model (for example, for
capacity bottlenecks or supply shortages) and develop
recourse options (for example, outsourcing or short-
term leasing of tools, rescheduling of supply deliver-
ies) that they can incorporate in the next instance of
the model.

Demand Prioritization

An early implementation of an LP model for semi-
conductor SCO at IBM treated all demand as equally
important. Planners prioritized demand using man-
ual adjustments to supply chain plans. Initially users
rejected the idea of considering demand classes
within the MIP. However, users were eventually con-
vinced that explicit modeling of a small number of
demand classes could (potentially) be an effective
approach for trading off supply and demand match-
ing decisions. Initially user prototyping began with
just two demand classes. However, once users saw
the value of modeling demand classes explicitly, they
encouraged us to increase the number of demand
classes.

In the current implementation of the MIP, we assign
demands different priorities by assigning a demand-
class subscript to variables F,,,, and B,,,,. For exam-
ple, demand class 1 may be associated with customer
orders that have been committed and are scheduled to
be filled in the near term (for example, in four weeks).
Other demand classes may be associated with order
reservations, buffers, or safety stocks and hence have
lower priorities because they do not support an actual
customer order. We indicate the varying priorities by
applying back-order costs, BC,,,,, that are decreasing
in demand class g.

Ideally, the method we used for modeling back-
order costs would guarantee demand-class compli-
ance for any number of demand priorities for a
single model instance; that is, it would allocate capac-
ity and inventory assets to satisfy higher-priority
demands (to the extent possible) before lower-priority
demands. In theory, we could do this by setting the
back-order penalty for a particular demand-class pri-
ority arbitrarily higher than the penalty for the next
lower-demand priority. However, in practice, because
the numerical accuracy of floating point operations on
computers is finite, there are bounds on the range of
objective function penalties for which LP factorization
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methods are stable (experimental evidence implies
that 0.01 to 1,000,000 is a reasonable assumption when
operating with double precision using 64-bit com-
pilation). Therefore, the bounds on the differences
between objective function coefficients represent adja-
cent demand classes. These bounds effectively limit
the number of demand classes that we can model
accurately within the MIP.

The rapid proliferation of demand classes by users
of the MIP at IBM led to eventual deterioration
in demand-class compliance within the MIP model.
In response to this problem, we have developed a
method for dealing with this practical issue based
on consideration of groups of demand classes. The
method iteratively modifies and solves the respective
MIPs for each group and leverages the results from
one solution to warm start the next. The combination
of grouping and warm starting saves computation
time while respecting demand classes in the solution.
The method considers relaxed versions of the MIP
model at each iteration that allow for flexibility in
realigning resources (for example, work-center capac-
ity) to accommodate low-priority groups without sac-
rificing higher-priority groups. Within each group,
back-order costs are calibrated, based on a function
that describes the relative importance of demand
classes, subject to constraints on the minimum and
maximum allowable cost coefficients in the MIP.

Preemptive Priority Algorithm

Step 1. Define demand-class groups from the set of
demand classes and index the groups from i =1,
...,n from the lowest to the highest priority. The
number of distinct demand classes in group i is N(i).
Seti=1.

Step 2. Set 4, =0 Vg > Y;_ N(k) and unfix all
Eoutakg, such that ¢ is in the current priority group or a
lower (more important) priority group than i.

Step 3. Recalibrate cost penalties for variables B,
for all g4 in group i, making use of the full allowable
range of cost coefficients.

Step 4. Solve the modified group i LP: If (i > 1);
then warm start the LP solution using the previous
solution as an advanced basis.

Step 5. Add the following new constraint requiring
that B, variables in group i are lower bounded,
based on the back-order variables, B}, , in the current

LP solution from Step 4:

Z Bmtkq = Z B:;:tkq Vt' q-
m, k m, k

Step 6. Reset the LP basis with the current vari-
ables fixed using the dual simplex method. Increment
group to i =i+ 1. If (i =n +1) stop; otherwise return
to Step 2.

Discrete Production Releases

Lot sizing is important because silicon wafers are
manufactured in discrete containers. In an early
implementation of an LP model for supply chain
planning at IBM, lot sizing was not considered. How-
ever, because lot sizes were reflected in actual exe-
cution of production (through manual adjustments
to plans), this meant that the resulting MIP solu-
tion contained inherent accuracies in tool-capacity
requirements and in matching finished products with
customer demand. The relatively coarse grain of lot
sizes with respect to daily tool capacity meant that
the model had serious shortcomings in accuracy. The
consideration of lot sizing within the MIP model
was critical in achieving optimal allocation of supply
and capacity throughout IBM’s semiconductor supply
chain.

We developed a heuristic for achieving feasible and
near-optimal solutions to the MIP, given consideration
of the discrete constraints P,,,. € E, where E repre-
sents the discrete set of allowable production starts
based on lot-sizing rules. Our heuristic starts with a
solution to the root node problem, that is, the LP with
the discrete lot-sizing constraints relaxed. We then
use a two-step heuristic to determine a feasible and
near-optimal solution to the MIP problem. In Step 1,
we sequentially modify the production start variables,
P4, through a depth-first search according to a vari-
able sequencing and branching strategy designed to
produce a good feasible solution quickly. In Step 2,
we look for local improvements by sequentially relax-
ing selected lot-sizing constraints in the Step 1 MIP to
improve the initial solution.

The concept of a low-level code is well known in
the context of MRP (Orlicky 1975). Low-level codes
denote levels of the BOM. For example, finished
goods with associated customer demand might be
assigned low-level code 0; assemblies used to build
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these finished products would then be assigned low-
level code 1; and so on. While moving through the
binary tree, it may be infeasible to branch up because
doing so may, for example, violate a production con-
straint (for example, insufficient work-center capacity
to increase the production start). In such a case, it
is necessary to backtrack, that is, reverse the lot-size
decision and branch down. Furthermore, the poten-
tial for backtracking is not limited to a single itera-
tion. For example, backtracking one iteration would
not be sufficient because rounding down could also
be infeasible. We might use multiple-iteration back-
tracking when a previously lot-sized variable for an
assembly has been fixed, and therefore it is infeasi-
ble to branch down a variable representing a compo-
nent to the assembly. In practice, when a BOM has
many levels, this backtracking can mean unaccept-
able computation times. However, sorting the vari-
ables from highest to lowest low-level code in the
BOM (for example, raw materials to finished prod-
ucts) limits the backtracking to a single iteration at
most. Sorting guarantees that no assembly variable is
rounded before its associated components, that is, we
can always round the assembly production start vari-
able down.

We based the branching strategy in Step 1 on im-
plicitly representing the branch-and-bound tree as a
set of discrete feasible values defined by the nearest
neighbor subset of 5, rather than the alternative of
explicitly reformulating the LP to include binary vari-
ables and additional constraints. In addition to allow-
ing for a much more manageable LP relaxation at each
node, this strategy also makes it straightforward to
selectively relax lot-sizing rules for very large pro-
duction starts when it is a reasonable approximation
to ignore lot sizing. The discrete feasible values are
represented by a binary tree. The binary tree consists
of nodes representing relaxed LPs to be solved, each
branching to two other nodes, denoting a variable’s
branching up or down for a given variable to the next
higher or lower feasible lot-sized values. In reality,
this use of a binary tree is an approximation because a
given variable may take on a range of possible values
(for example, for a container constraint any integer
multiple of container size is feasible). To avoid exces-
sive restriction of the set of feasible values, we recom-
pute the nearest neighbor subset of E dynamically as

progress is made through the binary tree in Step 1
and consider only nearest neighbors as candidates to
be successor nodes. Therefore, the binary tree defi-
nition is dynamically changing as the heuristic pro-
ceeds. This method effectively trades off the needs for
high-quality solutions and short computation times.

In Step 1, we preferentially branch variables up to
the next feasible lot-sized value in E, provided the
resulting LP has a feasible solution. This branching
strategy is consistent with a high-service-level com-
mitment that is typical in the semiconductor industry.
An exception to the decision to branch up is applied
if the change in the objective function between the
original LP (prior to branching) and the new LP
(after branching) exceeds a user-defined tolerance.
This could happen, for example, if increasing the cur-
rent production-start variable would steal capacity
from a production start (for a more important demand
class). The Step 1 heuristic also allows us to branch
multiple (n) variables at a time, which can improve
computational efficiency. For each set of n variables
in Step 1, we can decide to branch up or down. Either
option is permissible, but both may not be feasible
because of previous branching decisions. In the event
that branching on n variables is infeasible, the heuris-
tic reverts to branching one variable at a time.

In Step 2, a series of iterations is conducted to im-
prove the quality of the solution obtained in Step 1.
The solution is successively improved by partitioning
the problem into subproblems, based on related parts
in the BOM, and computing improved local solutions
for each subproblem. The search iterates through sub-
problems until either the solution improvement for a
pass through the subsets is below some user-defined
tolerance or the total run time exceeds the allotted
time specified by the user (for example, one hour).
Each subset of variables has its previous branching
decisions relaxed, and a search is carried out to deter-
mine whether a different lot sizing of the variables
in the subset would improve the solution. In general,
any search method may be used to solve the restricted
MIPs in Step 2. We find it effective to use a modi-
fied version of our Step 1 method, sequencing vari-
ables in Substep (iii) in increasing order of low-level
code (rather than decreasing order). We thus diversify
the portions of the branch-and-bound tree that are
explored, resulting in the greater potential for solu-
tion improvements.
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Figure 2: This diagram illustrates how the lot-sizing heuristic groups part
numbers in the bill of material to decompose the mixed-integer program
into smaller subproblems. The solution of smaller subproblems is the
basis for the fast improvement heuristic for discrete lot sizing of semi-
conductor production starts.

In general, any approach for allocating variables
to sets can be used in Step 2. The specific method
that we have used (Figure 2) involves partitioning
P,,... variables based on their associated PNs using
the BOM. Each iteration begins with a finished-good
part at the top of the BOM, that is, parts with external

Substep (i): Solve root
node LP

}

f Substep (ii): Fix variables
> within specified tolerance

demand that are not components of any other part.
A breadth-first search is carried out, and all parts con-
nected through the BOM to the finished-good part are
grouped into the same set. Once all connected parts
are collected, the iteration is complete and a new iter-
ation begins with the next unprocessed finished-good
part. The process continues until all parts have been
allocated to a unique subset.

The Two-Step Lot-Sizing Heuristic

Step 1. In Step 1, the initial lot-sized solution con-
struction, perform a depth-first search to iteratively
adjust variable values so that they satisfy discrete lot-
size constraints (Figure 3):

(i) Solve the root node LP using a primal-
simplex-based method and maintain this solution as
memory resident.

(ii) Fix all variables with associated lot-size con-
straints that have values within some € tolerance of
feasible lot-sized values.

(iii) Obtain the next lower and higher feasible lot-
sized quantities in 5 and sort the pending variables,
P, ..., in a list by increasing order of period, j, decreas-
ing order of low-level code position in the BOM for
the part, m, and increasing in difference between the

of feasible values

)

(" Substep (iii): Compute

All variables

nearest neighbors and
sort pending variables )

l

Substep (iv): Branch up n

lot sized?

No variables and re-solve LP |

Solution
feasible?

Tolerance
exceeded?

-

Substep (v): Set n=1,
branch down, re-solve
LP, and select best

feasible solution

T

Figure 3: We show the steps involved in the initial construction of a feasible solution to the mixed-integer pro-
gram constituting the first step of our heuristic for acquiring a solution with lot-sized production starts.
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current value and the nearest higher feasible lot-sized
value. If all variables satisfy lot-sizing constraints,
then proceed to Step 2.

(iv) Choose the first n variables in the sorted list,
branch up the n variables, and re-solve the resulting
LP using the dual-simplex method. If the LP has a fea-
sible solution and the change in the objective function
does not exceed a user-defined tolerance, then return
to Substep (ii).

(v) If n>1, set n =1, relax branching constraints
for the chosen n variables, and return to Substep (ii).
Otherwise, branch down on the variable and re-solve
the resulting LP.

(vi) Select the best solution from the up and
down branches and return to Substep (ii).

Step 2. In Step 2, the lot-sized solution improve-
ment, iteratively compute revised solutions to separa-
ble subproblems, as follows (Figure 4):

(i) Construct subsets of P,,,, variables, &, i =
1,...,L, based on the BOM structure (Figure 2). Set
i=1.

(ii)) If i =L, set i = 1. Otherwise, set i =i+ 1.
For variables in subset #;, relax branching constraints
added in Step 1 or Step 2.

(=0

Substep (i): Construct
variable subsets based
on BOM

I

Substep (ii): For variables
in subset j, relax
branching constraints )

!

Substep (iii): Solve relaxed
MIP using modified Step 1

}

Substep (iv): If solution
improved, update the
global solution. lterate /.

No

Max run time
exceeded?

Figure 4: The steps involved in the improvement of the initial feasible
solution to the mixed-integer program make up the second step of our
heuristic, in which the lot-sized production starts are iteratively improved
to generate a final and near-optimal solution.

(iif) Solve the resulting MIP using the method of
Step 1 but with variables reverse-sequenced in order
of increasing low-level code.

(iv) If an improved solution results from Sub-
step (iii), then update the global solution with the
local improvement.

(v) If the specified maximum run time has been
exceeded, then stop with the current solution (stop-
ping condition). Otherwise, return to Substep (ii).

IBM has deployed this lot-sizing heuristic success-
fully in a production application of the MIP model.
The most significant hurdles in implementing the
method were due to the heuristic nature of the solu-
tion. Whereas solutions to the LP relaxation of the
MIP model are optimal, solutions based on the lot-
sizing heuristic are not necessarily optimal. In prac-
tice, the heuristic provides solutions that are, in
aggregate, close to optimal. However, it is possible
to find specific cases that are suboptimal. Our care-
ful explanation of the complex nature of the problem
(and the limitations on all heuristics) and our demon-
stration that our solutions are typically near optimal
contributed to user acceptance and to the successful
implementation of our method.

Impact

The MIP is a critical part of the CPE, which has been
used extensively in the IBM Systems and Technol-
ogy Group in planning semiconductor supply chain
operations. Planners solve instances of the CPE many
times each day to create enterprisewide supply chain
plans. In particular, they use the CPE to

—Calculate a detailed worldwide supply that is
available for customer commitments,

—Provide production and shipping directions to all
manufacturing lines in the enterprise,

—Optimize material and capacity allocations,

—Execute what-if and other try-for-fit sizings, and

—PFacilitate strategic planning and operational
planning.

The CPE and associated changes to IBM’s business
processes have

—Improved on-time deliveries by 15 percent,

—Improved asset utilization by two to four percent
of costs, and

—Reduced inventory by 25 to 30 percent.
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The CPE has improved customer service, inventory
requirements, and asset utilization. Instead of deter-
mining an optimal point on a service-inventory trade-
off curve, the CPE has enabled a shift in the entire
curve. IBM uses the MIP model for planning about
a third of the semiconductor parts processed by the
CPE and handles the other parts with fast heuris-
tic algorithms. The parts it plans using the MIP tend
to be the most complex from a supply chain per-
spective, for instance, they have more complicated
material flows and capacity utilization (for example,
binning, multiple production processes, and process-
ing at multiple sites). In the semiconductor industry,
the parts that are most complicated to plan are typi-
cally those producing the highest revenue. Therefore,
whereas the MIP is associated with approximately
one-third of all semiconductor parts planned at IBM,
the total associated revenue is at least one-third of
the total. Therefore, the MIP is associated with a sig-
nificant portion of the financial and customer-service
impact described.

In addition to the quantitative benefits, there are
important impacts of our heuristics that are difficult to
measure directly. For instance, the presolve heuristic
has resulted in substantial reduction of computation
time, to the point where a CPE model of the entire
enterprise can be solved in less than three hours; it
has reduced MIP computation time by 75 percent.
In practice, models such as the CPE are limited by
the number of scenarios that can be successfully ana-
lyzed within a fixed cycle time for the overall business
process. Because of reductions in computation time,
IBM planners can analyze several scenarios per day,
responding to capacity and supply bottlenecks in the
supply chain, and feeding back recourse options into
the next instance of the model. Furthermore, preemp-
tive demand-class prioritization allows IBM to plan
for true demand priorities. With these OR innova-
tions, IBM can allocate the assets of its multibillion
dollar enterprise intelligently and rapidly and simulta-
neously improve its profitability and customer service.

Appendix
Following is a detailed description of the MIP model:

Indices
t: Time period index 1, ..., T.
m: Material (part number) from 1, ..., M.

: Plant location within the enterprise 1, ..., A.
: Material being substituted 1, ..., N.
: Process used to make the material 1, ..., E.
: Receiving plant location 1, ..., V.
: Consuming location (may be plant or demand
center 1,..., U).
: Customer demand center 1, ..., K.
: Demand class (relative priority) 1,..., Q.
: Resource capacity 1,..., W.
: Collection of related parts based on sourcing
rules z=1, ..., Z.
CT: Set relating cycle time in period x to the cur-
rent period t, where CT ={x|x =1t — ctpa}-
TT: Set relating transit time in period x to the cur-
rent period t, where TT ={x |x =t — tt,,,,,}
AC,,,: Set of parts m that are components of assembly
n.

S < o I D

N & o

Decision Variables
IL,..: Inventory at the end of period t for part m at
plant a.

P,,...: Production starts of part m during period ¢ at
plant a using process e.

Liume: Amount of part n substituted by part m during
period ¢ at plant a.

Timao: Internal shipments of part m leaving plant a
during period ¢ destined for plant v.

Finakg: Shipments of part m leaving plant a during
period t satisfying class g demand at custo-
mer k.

Byukq: Back orders of part m at the end of period ¢ for

class ¢ demand at customer location k.

H;,,: Total shipments of group z parts leaving sup-
pliers during period t to location(s) u.

Si..u: Shipment of part group z from plant a to u dur-

jzau
ing period t that exceeds the maximum target.

Gyt Shipment of part group z from plant a to u dur-
ing period t that falls short of the minimum
target.

Model Constants

PC,,,..: Cost of releasing one piece of part m during

period t at plant a using process e.

LC,,,..: Substitution cost per piece of part n substi-
tuted by part m in period ¢ at plant a.

TC,pap: Transportation cost per piece of part m leav-
ing plant a during period t destined for plant
0.
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SCa: Shipping cost per piece of part m leaving plant s.t.
a during period t destined for customer k. . A
IC,,,,; Inventory holding cost per piece of part m in @ Buikg = Broamiq + Z Finatg =Dymq Yt m, Kk, 4,
period t at a plant 4. . -
BCiyuy: Back-order cost per piece of part m in period ¢ (i) Tona = Tttmg th pmaePimae + Xn: Ltnna
for class g demand at customer k.
CS,...: Cost of deviating from sourcing rule in period = EpnaLinma — Y Z Timoa + Z Tinao
t for consuming location u and part group z. n teTT v=1
D,i,t Demand requested in period t for part m at K e
fmkq q : p p + Z Z E&muk + Z Ztmaenptnae = Rtmu
customer location k for demand class g. oo e
R,,..: Receipts (projected WIP or purchase orders) of Vi om.a
part m to be received at plant a in period ¢. u E T
U, Capacity of resource w available at plant a (iii) 33 ViaewPiae < Ui VE, 0, W,
during period t. m=1e=1
Vimaew: Capacity of resource w required per piece of )
part m at plant a for process e in period t. (iv—a) Hpy =3 Zl< tmau lef’"”“q) 0
mez a=
Zimaen: Amount of component m per assembly n q Yz fu
started in period t at plant a with process e. 0 T
Y et Qutpu‘t of par.t m per piece started at plant a (v—b) ¥ <Ttmau +y thauq)_stzau max H,, <0
in period t using process e. mez =1
E, et Amount of part m required to substitute per Vz,t,a
piece for part n at plant a in period t.
Ctimae: Cycle time for production of part m at planta  (iv—c) Z( o T D thauq) + Grzau — rnm H,, =0
using process e in period . e 7=l
tt,.o: Transit time for part m from plant a to plant v. vzt a,
E: Discrete set of feasible production starts based (v) Pe €E,
on lot-size constraints.
Ptmuel Ltmnal Emakq/ Ttmavl Itma/ tmkq >0.
MIP Model References
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