Facility Location

Bahar Y. Kara

Adapted from P. Keskinocak's lecture notes

What is a "Facility"?

Factors influencing location

 decision- Locations of customers
- Location of suppliers
- Transportation access
- Real estate costs
- Material costs
- Cost of labor

Expansion capability

Local political conditions
Climate
Weather events
Insurance costs
Locations of competitors

Why do we need optimization models to locate facilities?

Customer locations and demand:
A: $(2.0,2.9)$,
520 units
B: (3.1, 2.5),
800 units
C: ($1.8,2.2$),
540 units
D: (2.4, I.7),
I,550 units
E: (0.5, I.6), 790 units
F: (I.7, 0.6),
I,260 units
G: (3.3, I.4), 2,050 units

Locate a distribution center to minimize the weighted distance from customers (center-of mass)

Measuring Distances

- "Manhattan distance" (I-norm)
- Best for cities with perpendicular streets

$$
L_{1}=\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|
$$

- N-S distance + E-W distance
- "As the crow flies" (2-norm)
- Best for long distances and

$$
L_{2}=\sqrt[2]{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$ highways

- Larger of N-S and E-W distances (∞-norm)
- Useful for automatic

$$
L_{\infty}=\max \left(\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right)
$$ warehouses

Center-of-mass

- Center-of-mass location = The weighted average location of a set of populations
- Weights can be:
- Population size
- Demand
- Importance
- Severity of need

$$
(\bar{x}, \bar{y})=\frac{\sum_{i} d_{i}\left(x_{i}, y_{i}\right)}{\sum_{i} d_{i}}
$$

$d_{i}=$ weight of population i
$x_{i}=x$-coordinate of population i
$y_{i}=y$-coordinate of population i

Example

- Center of Mass:

$$
\bar{x}=\frac{x_{A} d_{A}+x_{B} d_{B}+x_{C} d_{C}+x_{D} d_{D}+x_{E} d_{E}+x_{F} d_{F}+x_{G} d_{G}}{d_{A}+d_{B}+d_{C}+d_{D}+d_{E}+d_{F}}
$$

$$
\begin{aligned}
\bar{x} & =\frac{x_{d} d_{A}+x_{B} d_{5}+x_{c} d_{C}+x_{B} d_{B}+x_{B} d_{E}+x_{F} d_{F}+x_{B} d_{D}}{d_{A}+d_{S}+d_{C}+d_{D}+d_{E}+d_{F}+d_{B}} \\
& =\frac{(2.0 * 520)+(3.1 * 800)+(1.8 * 540)+(2.4 * 1550)+(0.5 * 790)+(1.7 * 1260)+(3.3 * 2050)}{520+800+540+1550+790+1260+2050} \\
& =2.3 \\
\bar{y} & =\frac{(2.9 * 520)+(2.5 * 800)+(2.2 * 540)+(1.7 * 1550)+(1.6 * 790)+(0.6 * 1260)+(1.4 * 2050)}{520+800+540+1550+790+1260+2050} \\
& =1.6
\end{aligned}
$$

Example (cont.)

- Least-distance facility located at $(2.3, ~ I .6)$
- What could be wrong with this location?
- Cost of land
- Availability of land
- Traffic congestion to/from facility
- No information about tax structure
- Zoning

Example (cont.)

Candidate locations, costs:
I: (2.3, I.6), \$30M + \$50/unit
2: (1.3, 2.5), \$15M + \$40/unit
3: (I.9, 3.7), \$12M + \$30/unit
4: (3.7, 3.2), \$15M + \$35/unit
5: $(0.8,0.3), \$ 10 M+\$ 40 /$ unit Assumptions:

- Travel costs are $\$ 1 /$ mile-unit
- Demand fulfilled weekly

- Each unit square is 8×8 miles

Developing the optimization model

- Decisions to make:
- Whether to open each candidate location?
- How much to ship to each customer from each opened facility
- Optimization model:
- Minimize cost
- All demand must be fulfilled
- Limit number of facilities to be opened
- Only ship from open facilities

Notes

Facility Location Integer Programming Sample Formulation

- Objective Function
- Can be minimize cost, delivery time, maximize impact etc.
- Decision Variables:
- Binary variables indicating whether each facility i should be opened
- Amount of each item to be held at each facility
- Amount of each item to be received from each supplier to each facility
- Amount of each item to be sent from each facility to each customer

Facility Location Integer Programming Sample Formulation (2)

- Inputs: -
- Set of possible locations to open facilities
- Set of suppliers
- Set of customers
- Cost or time along each transport route
- Set of products to be supplied to customers
- Demand of each customer for each product
- Max number of facilities to open
- Max inventory space available at each facility

Facility Location Integer Programming Sample Formulation (3)

- Minimize or maximize
- Subject to
- Customer demand is satisfied
- Flow out of each facility = Flow into each facility
- Max number of facilities (budget)
- Max inventory space is not exceeded
- Inventory only held at open facilities

Many different objective functions

- Maximize profit (common in for-profit problems)
- Minimize cost under a minimum acceptable service level (eg minimum number of facilities, a certain percentage of demand met)
- Maximize service level under some constraint (ie budget)
- Minimize average response time

Many different objectives functions

- Common healthcare objectives
- Minimize cost (common in for-profit healthcare)
- Maximize benefit to health (can be minimize negative health outcomes and maximize positive health outcomes)
- Maximize equitability or fairness
- Multiple objectives

Facility Location Literature

Facility Location Literature

- P-median
- Location with fixed costs
- Covering problems
- Center problems

Notes

