Facility Location

Bahar Y. Kara

Adapted from P. Keskinocak's lecture notes

What is a "Facility"?

Factors influencing location decision

- Locations of customers
- Location of suppliers
- Transportation access
- Real estate costs
- Material costs
- Cost of labor

Expansion capability Local political conditions Climate Weather events Insurance costs Locations of competitors

Why do we need optimization models to locate facilities?

A: (2.0, 2.9),	520 units
B: (3.1, 2.5),	800 units
C: (1.8, 2.2),	540 units
D: (2.4, 1.7),	1,550 units
E: (0.5, 1.6),	790 units
F: (1.7, 0.6),	1,260 units
G: (3.3, 1.4),	2,050 units

Locate a distribution center to minimize the weighted distance from customers (center-of mass)

Measuring Distances

- "Manhattan distance" (I-norm)
 - Best for cities with perpendicular streets
 - N-S distance + E-W distance
- "As the crow flies" (2-norm)
 - Best for long distances and highways

 Useful for automatic warehouses

$$L_2 = \sqrt[2]{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

 $L_1 = |x_1 - x_2| + |y_1 - y_2|$

$$L_{\infty} = \max(|x_1 - x_2|, |y_1 - y_2|)$$

Center-of-mass

- Center-of-mass location = The weighted average location of a set of populations
- Weights can be:
 - Population size
 - Demand
 - Importance
 - Severity of need

$$(\bar{x}, \bar{y}) = \frac{\sum_{i} d_i(x_i, y_i)}{\sum_{i} d_i}$$

 d_i = weight of population *i* x_i = x-coordinate of population *i* y_i = y-coordinate of population *i*

Example

• Center of Mass:

$$\overline{x} = \frac{x_A d_A + x_B d_B + x_C d_C + x_D d_D + x_E d_E + x_F d_F + x_G d_G}{d_A + d_B + d_C + d_D + d_E + d_F}$$

$$\overline{x} = \frac{x_A d_A + x_B d_B + x_C d_C + x_D d_D + x_E d_E + x_F d_F + x_Q d_Q}{d_A + d_B + d_C + d_D + d_E + d_F + d_G}$$
$$= \frac{(2.0*520) + (3.1*800) + (1.8*540) + (2.4*1550) + (0.5*790) + (1.7*1260) + (3.3*2050)}{520 + 800 + 540 + 1550 + 790 + 1260 + 2050}$$

= 2.3

$$\overline{y} = \frac{(2.9*520) + (2.5*800) + (2.2*540) + (1.7*1550) + (1.6*790) + (0.6*1260) + (1.4*2050)}{520 + 800 + 540 + 1550 + 790 + 1260 + 2050}$$
$$= 1.6$$

Example (cont.)

- Least-distance facility located at (2.3, 1.6)
- What could be wrong with this location?
 - Cost of land
 - Availability of land
 - Traffic congestion to/from facility
 - No information about tax structure
 - Zoning

Example (cont.)

Candidate locations, costs: I: (2.3, I.6), \$30M + \$50/unit 2: (1.3, 2.5), \$15M + \$40/unit 3: (1.9, 3.7), \$12M + \$30/unit 4: (3.7, 3.2), \$15M + \$35/unit 5: (0.8, 0.3), \$10M + \$40/unit Assumptions:

- Travel costs are \$1/mile-unit
- Demand fulfilled weekly
- Each unit square is 8x8 miles

Developing the optimization model

- Decisions to make:
 - Whether to open each candidate location?
 - How much to ship to each customer from each opened facility
- Optimization model:
 - Minimize cost
 - All demand must be fulfilled
 - Limit number of facilities to be opened
 - Only ship from open facilities

Notes

Facility Location Integer Programming Sample Formulation

- Objective Function
 - Can be minimize cost, delivery time, maximize impact etc.
- Decision Variables:
 - Binary variables indicating whether each facility i should be opened
 - Amount of each item to be held at each facility
 - Amount of each item to be received from each supplier to each facility
 - Amount of each item to be sent from each facility to each customer

Facility Location Integer Programming Sample Formulation (2)

- Inputs:
 - Set of possible locations to open facilities
 - Set of suppliers
 - Set of customers
 - Cost or time along each transport route
 - Set of products to be supplied to customers
 - Demand of each customer for each product
 - Max number of facilities to open
 - Max inventory space available at each facility

Facility Location Integer Programming Sample Formulation (3)

- Minimize or maximize
- Subject to
 - Customer demand is satisfied
 - Flow out of each facility = Flow into each facility
 - Max number of facilities (budget)
 - Max inventory space is not exceeded
 - Inventory only held at open facilities

Many different objective functions

- Maximize profit (common in for-profit problems)
- Minimize cost under a minimum acceptable service level (eg minimum number of facilities, a certain percentage of demand met)
- Maximize service level under some constraint (ie budget)
- Minimize average response time

Many different objectives functions

- Common healthcare objectives
 - Minimize cost (common in for-profit healthcare)
 - Maximize benefit to health (can be minimize negative health outcomes and maximize positive health outcomes)
 - Maximize equitability or fairness
- Multiple objectives

Facility Location Literature

Facility Location Literature

- P-median
- Location with fixed costs
- Covering problems
- Center problems

Notes

