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This article concerns the location of satellite distribution centers (SDCs) to supply humanitarian aid to the
affected people throughout a disaster area. In such situations, it is not possible for the relief teams to visit
every single home. Instead, the people are required to go to a satellite distribution center in order to
obtain survival goods, provided that these centers are not too far from their homes. The SDCs are usually
within walking distance. However, these SDCs need to be supplied from a central depot, using a hetero-
geneous and capacitated fleet of vehicles. We model this situation as a generalization of the covering tour
problem, introduce the idea of split delivery, and propose an efficient heuristic approach to solve it.
Numerical experiments on randomly-generated data show that, first, only very small instances can be
solved efficiently using the mathematical model and, second, our heuristic produces high-quality solu-
tions and solves real-size instances in a reasonable computing time.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Given the growing number of natural disasters in recent years
and the enormous damage that these disasters have caused, the
interest of the scientific community in emergency logistics has
literally exploded in the last 10 years (Altay and Green, 2006). A
humanitarian crisis is a vast, extremely complex situation.
Although they are a small part of general crisis management, emer-
gency networks are difficult to design and manage, but their im-
pact on the efficiency of aid delivery is crucial. Emergency
logistics is a broad field, which includes such tasks as establishing
a rescue command center, collecting information about the disas-
ter area, identifying appropriate sites for shelters, determining
the best evacuation routes, delivering relief material, and installing
the medical, fire-prevention and emergency construction facilities,
as well as setting up evacuation transportation. Thus, these activi-
ties may involve both the inflow and outflow of goods and people.

This paper focuses in the inflow logistics and concerns the dis-
tribution of survival goods (e.g., food, water, medicine) to the peo-
ple in the disaster area. Distribution networks for humanitarian aid
are often compared to classic industrial distribution networks,
replacing suppliers with humanitarian agencies and distribution
centers with public sites that are temporarily adapted to store
ll rights reserved.

s de l’administration, Laval
8 656 2131.
and handle goods (Tzeng and Huang, 2007). The last link in the
industrial supply chain – the retailers – is replaced by mobile dis-
tribution booths, which are located in any parking lot or any major
street intersection so that people can have easy access. Finally,
while the objective of general distribution systems is to maximize
profit, relief distribution systems try to provide a fair, efficient dis-
tribution of aid.

In practice, a logistics network is composed of several central
depots (CDs), which have been deployed over the affected area,
with each CD being responsible of the needs of a given region. In
this paper, we will focus on one of these regions, where we assume
that a CD has been opened. Thus, the CD location is out of the scope
of this paper. However, the interested reader can consult, for exam-
ple, Rekik et al. (2011) for more details concerning the design of
such networks.

In the Canadian province of Quebec, the Civil Protection Act
(CPA) was adopted by the government and went into effect on
December 20, 2001. According to this CPA, each municipality must
develop and update its own emergency preparedness plan, which
includes all topics related to emergency logistics. Thus, we assume
that the emergency managers have identified several potential dis-
tribution sites in the targeted region, where several non-inter-
changeable products can be made available.

In response operations, the emergency managers must decide
which of these potential sites will be used as satellite distribution
centers (SDCs), depending on the situation. Since the victims have
to travel from their homes (i.e., the demand points) to the satellite
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distribution centers, these SDCs must be chosen so that the maxi-
mum distance traveled does not exceed a maximum distance set
by the emergency managers. In the rest of this paper, we will refer
to this maximum distance as the covering distance. A demand point
(DP) is covered if its distance to an open SDC is shorter than the cov-
ering distance.

The SDCs are supplied by a fleet of heterogeneous vehicles lo-
cated at the central depot. The SDC demand, which corresponds
to the demand of the victims assigned to it, may be split and trans-
ported in different vehicles. The problem is how to select the loca-
tions of the SDCs and how to supply them from the CD using the
available vehicle fleet to its best, while covering all the demand
points. Fig. 1 shows a network consisting of one central depot, 13
potential satellite distribution centers and 42 demand points (i.e.,
the victims’ homes) to be relieved. The illustrated solution uses
two vehicle routes and opens five satellite distribution centers in
order to cover all demand points.

The objective of this paper is to provide a tool that supports the
emergency managers in designing and operating a satellite distri-
bution center network. To this end, we propose a mathematical
model that determines the number and the location of the SDCs,
as well as the supply operations plan (i.e., truck route design and
the quantities to deliver to each SDC). The rest of this paper is
structured as follows. Section 2 defines the problem and proposes
a mathematical model. Section 3 reviews and classifies previous
studies relevant to the category of covering routing problems.
Section 4 presents our heuristic approach. Section 5 reports the re-
sults of our extensive numerical experiments to evaluate both the
limitations of the mathematical model to solve real-size instances
and the quality of the results produced by our heuristic approach.
Section 6 offers our conclusions and closes the paper.

2. Problem definition and mathematical model

The problem discussed in this paper may be defined as follows.
Let G = (V, A) be a complete directed graph in which V represents
the vertices and A is the arc set. In the case in question,
V = {0} [ I [ J, 0 is the central depot; I = {1, . . . , n} is the set of de-
mand points, where the people affected are located; and
J = {1, . . . , m} is the set of potential satellite distribution centers.
The number of elements of J that may be visited is free. However,
all the demand points of I must be covered. The arc set is defined as
A = {(vi, vj):vi, vj 2 V}, and a distance matrix cij is defined over A. The
amount of aid of type s (s = 1, . . . , t) required at demand point i 2 I
is dis and the weight of each aid unit s is ws. A fleet of l vehicles is
available; Qk represents the capacity (in units) of vehicle k=1, . . . , l.
Finally, a = {aij} is a n⁄m matrix, in which aij is equal to 1 if demand
point i is within the covering distance s from SDC j, and 0, other-
wise. Let us also define the following decision variables:
Disjk
 quantity of demand type s at demand point i supplied by
vehicle k while visiting SDC j;
xijk
 equals 1 if arc (i, j) is used by vehicle k, and 0, otherwise;

yjk
 equals 1 if SDC j is visited by vehicle k, and 0, otherwise;

and

uik
 a free variable used in the sub-tour elimination

constraints.
The model is formulated as follows:

Min
Xm

i¼0

Xm

j¼0

Xl

k¼1

cijxijk ð1Þ

s: t: :

Xm

i¼0

xijk ¼ yjk j 2 f1;2; . . . ;mg; k 2 f1;2; . . . ; lg ð2Þ
Xm

i¼0

xjik ¼ yjk j 2 f1;2; . . . ;mg; k 2 f1;2; . . . ; lg ð3Þ

Xm

j¼0

x0jk ¼ 1 k 2 f1;2; . . . ; lg ð4Þ

Xm

j¼0

xj0k ¼ 1 k 2 f1;2; . . . ; lg ð5Þ

Xm

j¼1

Xl

k¼1

aijDisjk P dis i 2 f1;2; . . . ;ng; s 2 f1;2; . . . ; tg ð6Þ

Xn

i¼1

Xt

s¼1

wsDisjk 6 Qkyjk k 2 f1;2; . . . ; lg; j 2 f1;2; . . . ;mg ð7Þ

Xt

s¼1

Xn

i¼1

Xm

j¼1

wsDisjk 6 Q k k 2 f1;2; . . . ; lg ð8Þ

uik � ujk þ ðmþ 1Þxijk 6 m i; j 2 f1;2; . . . ;mg; k 2 f1;2; . . . ; lg ð9Þ
xijk 2 f0;1g i; j 2 f0;1; . . . ;mg; k 2 f1;2; . . . ; lg ð10Þ
yjk 2 f0;1g j 2 f1;2; . . . ;mg; k 2 f1;2; . . . ; lg ð11Þ
uik P 0 i 2 f1;2; . . . ;mg; k 2 f1;2; . . . ; lg ð12Þ
Disjk P 0 i 2 f1;2; . . . ;ng; s 2 f1;2; . . . ; tg

j 2 f1;2; . . . ;mg; k 2 f1;2; . . . ; lg ð13Þ

The objective (1) is to minimize the total distance traveled by
the vehicle fleet. Constraints (2) and (3) insure that, for each SDC
j and for each vehicle k, there are either both incoming and outgo-
ing arcs or no arcs at all. Constraints (4) and (5) insure that, for
each vehicle of type k, there are two arcs connected to the depot.
Constraint (6) state that demand type s of demand point i may
come from various SDCs j and be delivered with one or more vehi-
cles. Constraint (7) link the distribution variables Disjk to the use of
vehicle k for a delivery to demand point j. For each vehicle k, con-
straint (8) impose the capacity threshold, and constraint (9) are the
classic sub-tour elimination constraints (Miller et al., 1960).
(Please note that the right-hand side is m, and not m � 1, because
the starting point is 0.) The remaining constraints are the decision
variable definitions.

The following sub-tour elimination constraints can be used as
well, since they are equivalent to the constraints in Kara et al.
(2004), considering that

Pt
s¼1

Pn
h¼1wsDhsjk is the demand of SDC j:

uik � ujk þ Q kxijk 6 Q k �
Xt

s¼1

Xn

h¼1

wsDhsjk i; j

2 f1;2; . . . ;mg k 2 f1;2; . . . ; lg ð14Þ

Clearly, this model may lack efficiency for solving medium to
large instances. This is the reason why we developed a heuristic
approach that will be presented in Section 4.
3. Literature review

As defined, our problem is closely related to a family of covering
problems, such as the covering salesman problem, the covering tour
problem and the median cycle problem, among others. In this sec-
tion, we review the most important covering problems and outline
the differences between them.

In the Covering Salesman Problem (CSP), the objective is to iden-
tify the minimum cost tour of a subset of p cities so that every city
not on the tour is within some predetermined covering distance of
a city that is on the tour. Current and Schilling (1989) used the CSP
to elaborate the routes for healthcare teams in developing coun-
tries, where the team has to visit a subset of the villages and the
rest of the population have to be within a walking distance of
the visited sites. They provided an integer linear formulation for



Fig. 1. Example of the studied network.
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the CSP and a two-steps heuristic based on a set covering problem
followed by a traveling salesman problem (TSP).

Current and Schilling (1994) introduced two bi-criteria variants
of the CSP, called the Median Tour Problem (MTP) and the Maximal
Covering Tour Problem (MCTP). In both problems, the tour must vis-
it only p of the villages, and the length of this tour must be mini-
mized. In the MTP, the second objective is to minimize the total
distance between each unvisited village and the nearest visited vil-
lage. For the MCTP, the second objective is to maximize the total
demand within some prespecified maximal travel distance from
a tour stop. Golden et al. (Forthcomming) defined and developed
a generalization of this problem and referred to some of the real
applications in which satisfying the demand of some customers
cannot be met by visiting or covering them for just once and each
city i has to be covered ki times. A local search heuristic based on
classic TSP improvement procedures is proposed.

Gendreau et al. (1997) studied the Covering Tour Problem (CTP)
in which the vertices are divided as follows: W1 is a set of vertices
that can be visited; W �W1 is a set of vertices that must be visited,
including the depot; and W2 is a set of vertices that must be cov-
ered. The objective of the CTP is to minimize the length of the
Hamiltonian cycle over a subset of W1 in such a way that the tour
contains all vertices W , and every vertex of W2 is covered by the
tour (i.e., it lies within a specified distance from a vertex of the
tour). To solve this problem, they proposed first an exact branch-
and-cut algorithm and second, as Current and Schilling (1989),
an algorithm combining both a set covering and a TSP heuristics.
Baldacci et al. (2005) proposed three scatter search algorithms to
solve the CTP. Hachicha et al. (2000), and previously Hodgson
et al. (1998) in the case of a mobile healthcare facilities planning
application, have studied the multi-vehicle CTP. Jozefowiez et al.
(2007) studied the Bi-Objective Covering Tour Problem (BOCTP), in
which the second objective consists of minimizing the greatest dis-
tances of the covered nodes. They proposed a two-phase coopera-
tive heuristic that combines a multi-objective evolutionary
algorithm with a branch-and-cut algorithm. They also developed
an e-constraint approach to determine optimal Pareto sets. An ex-
tended and stochastic version of the BOCTP was studied by Tricoire
et al. (2012).
Nolz et al. (2010) proposed a Multi-Objective Covering Tour Prob-
lem (MOCTP) in which, given a central depot and a set of identical
vehicles, the demand of each node has to be satisfied by exactly
one vehicle. The goal of the problem is to minimize the following
objectives: (1) the combination of the mini-sum facility location cri-
terion (i.e., the sum of distances between all nodes and their nearest
open facility) and the maximal covering location criterion (i.e., the
number of nodes unable to reach a facility within a predefined max-
imum distance), (2) the total tour length, and (3) the latest arrival
time at a node. They solve a bi-objective problem by considering
the objectives (1) and (2) and then the objectives (1) and (3). To this
end, a metaheuristic encompassing variable neighborhood search,
path relinking, and a genetic algorithm, is proposed.

The covering tour problem is related to the Prize-Collecting Trav-
eling Salesman Problem (PCTSP) and to the Selective Traveling Sales-
man Problem (STSP). In these problems, a non-negative profit pi is
associated with each vertex i. In the PCTSP, the objective is to min-
imize the tour length through a subset of the vertices so that the
profit pi collected on the subtour is at least equal to a given value
(Fischetti and Toth, 1988). On the contrary, in the STSP, the objec-
tive is to search for a subtour with the highest profit, and a length
not exceeding a preset value (Laporte and Martello, 1990). In both
cases, authors provided linear integer formulations, and solved
them by branch-and-bound algorithms.

Another related problem is the Median Cycle Problem (MCP),
which is studied in two versions. In the first version called MCP1,
the sum of routing distance of the cycle and the assignment dis-
tance of the vertices not in the cycle to their nearest vertex in
the cycle are minimized. This problem is also called the ring star
problem (Kedad-Sidhoum and Hung Nguyen, 2010). In the second
version called MCP2, the routing distance is minimized, subject to
an upper bound on the assignment distance. Moreno Pérez et al.
(2003) and Renaud et al. (2004), solved both versions of the MCP
by using, respectively, a variable neighborhood tabu search heuris-
tic, and an evolutionary algorithm.

Table 1 presents the characteristics of the major related prob-
lems appearing in the literature. To the best of our knowledge,
none of the published papers integrates simultaneously all the
characteristics of the situation studied in this paper. Our problem



Table 1
Characteristics of major related problems.

Problem name Authors Objective function No. of vertices in
the subtour

Kinds of node Covering
distance

Nodes
with
demand

Nodes
with
profit

No. of
products

No. of
vehicles

Covering
Salesman
Problem – CSV

Current and Schilling
(1989)

Minimize distance Fixed, p One Yes No No 1 1

Median Tour
Problem – MTP

Current and Schilling
(1994)

Minimize Z1 = distance
and Z2 = assignment
cost

Fixed, p One No Yes No 1 1

Maximal Covering
Tour Problem –
MCTP

Current and Schilling
(1994)

Minimize Z1 = distance
and maximize and
Z2 = demand within a
covering distance

Fixed, p One Yes Yes No 1 1

Covering Tour
Problem – CTP

Gendreau et al. (1997)
and Baldacci et al.
(2005)

Minimize distance
while covering nodes
of W2

Free W1 can be visited,
some must be
visited and W2

must be covered

Yes No No 1 1

Bi-Objective
Covering Tour
Problem –
BOCTP

Jozefowiez et al. (2007) Minimize distance of
visited nodes and the
maximum distance of
covered nodes

Free W1 can be visited,
some must be
visited and W2

must be covered

Yes No No 1 1

Multi-Objective
Covering Tour
Problem –
MOCTP

Nolz et al. (2010) Combination of two
objectives choosen
between three

Free One Yes Yes No 1 m

Multi-Vehicle
Covering Tour
Problem – m-
CTP

Hachicha et al. (2000) Minimize distance
while covering nodes
of W2, subject to
maximum number of
nodes and maximum
distance per route

No more than p W1 can be visited,
some must be
visited and W2

must be covered

Yes No No 1 m

Prize Collecting
Traveling
Salesman
Problem –
PCTSP

Fischetti and Toth
(1988)

Minimize distance
subject to a minimum
profit collected

Free One No No pi 1 1

Selective Traveling
Salesman
Problem – STSP

Laporte and Martello
(1990)

Maximize profit
subject to a maximum
distance

Free One No No pi 1 1

Median Cycle
Problem –
MCP1

Moreno Pérez et al.
(2003), Kedad-
Sidhoum and Hung
Nguyen (2010), and
Renaud et al. (2004)

Minimize distance and
assignment cost

Free One No No No 1 1

Median Cycle
Problem –
MCP2

Moreno Pérez et al.
(2003) and Renaud
et al. (2004)

Minimize distance
subject to a maximum
assignment cost

Free One No No No 1 1

Current
contribution

Minimize distance Free J can be visited
and I must be
covered

Yes Yes No Many m
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extends the multi-vehicle covering tour problem to include multi-
ple commodities, heterogeneous capacitated fleet, and split deliv-
eries. These characteristics are needed to model humanitarian aid
distribution more accurately.
4. A multi-start heuristic

This section presents our heuristic approach for solving the de-
fined problem. The procedure starts by running a Preprocessing step
on the problem data in order to identify whether or not one or sev-
eral SDCs need to be opened at specific locations to guarantee that
a feasible solution can be reached. After running the preprocessing
step, an initial feasible solution is produced by the Initialization
step, and then a Local Search (LS) is conducted. This local search
searches several neighborhoods and uses several procedures that
try to avoid the search being trapped by the local optima. The LS
was embedded into a multi-start mechanism so that, for a specific
number of times, a solution is constructed and improved itera-
tively. The goal of this mechanism is to increase the robustness
of the LS, with respect to the initial solution, as well as to improve
its ability to explore non-visited regions of the solution space. The
algorithmic structure of our heuristic approach is shown in Fig. 2,
and each procedure is described in the following subsections.
4.1. Preprocessing

This first step of the algorithm is executed only once, although
of the number of restarts (#_restarts) selected may be more. The
goal of preprocessing is to identify demand points (DPs) that have
a single SDC within the maximum covering distance s. In other
words, it seeks for DPs that can only be covered from one single
SDC and selects these SDCs to be in any feasible solution. These
SDCs will be denoted ‘‘essential’’ in the rest of the paper. For each
SDC j, the subset Tj, including all the demand points within a dis-
tance s of j, is constructed.
4.2. Initialization

The Initialization step finds an initial feasible solution. At the
beginning of this step, all the demand points i 2 I are tagged as
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‘‘unassigned’’, and the remaining capacity of each vehicle k 2 K, de-
noted Rk, is set to Qk. The Initialization step randomly draws a vehi-
cle k and a SDC j from the lists of available vehicles and potential
SDCs, respectively. Then, a demand point i 2 Tj is randomly se-
lected. If the weight of the total demand of DP i for every type of
demand s (i.e.,

P
sdisws) is less than or equal to Rk, then the demand

point i is ‘‘assigned’’ to SDC j. Rk is decreased appropriately, and an-
other unassigned DP in Tj is considered. If all the DPs in Tj are as-
signed, then the next SDC in route k (i.e., j + 1) is selected as the
closest SDC to j for which Tj+1 contains at least one unassigned de-
mand point. The DPs, and therefore the SDCs, are added to the cur-
rent route k as long as Rk remains positive.

If Rk cannot satisfy the volume required by the incumbent DP,
the algorithm assigns as many products as possible (the order in
which products are assigned is irrelevant), and the route k is com-
pleted by returning the vehicle to the depot. Then, a new vehicle
k + 1 is randomly selected from the vehicle list, the current SDC
being its first stop, and the unsatisfied demand of the incumbent
DP is assigned to it. As a result, the demand of this DP is split.
The algorithm assigns demand points, adds SDC and builds new
routes (i.e., selects new vehicles) until all the DPs have been as-
signed. The feasible solution produced by the initialization step is
then used as the initial solution for the local search. (Please note
that, in the rest of this paper, we use ‘‘routes’’ and ‘‘vehicles’’ as
synonyms because only active vehicles are considered and each
route is performed by a single vehicle.)

4.3. Local search

The Local Search contains several mechanisms procedures that
have been designed to tackle specific parts or characteristics of
an incumbent solution. In particular, the search process executes
consecutively the following procedures:

1. the Delete-Redundant-SDC procedure, which tries to eliminate
unnecessary SDCs (or stops) on the routes;

2. the Swap procedure, which tries to reduce the route length by
applying a 2-Opt exchange on each route and between different
routes;

3. the Drop & Add procedure, which tries to replace an opened SDC
by one or more SDCs that are not visited in the current solution;

4. the Extraction–Insertion procedure, which tries to move a SDC
from its current route to another one, so as to better use the
vehicle capacity.

The procedure is repeated for a given number of iterations
(#_LocalSearch_iterations).

The following subsections are devoted to the comprehensive
description of each procedure.

4.3.1. Delete-Redundant-SDC procedure
An SDC j is called redundant if, after removing it from a route,

the solution remains feasible, meaning that all the demand points
currently satisfied by j can be reassigned to another open SDC on
the same route. This procedure is particularly useful because the
Initialization step tends to produce solutions that contain too many
SDCs. The Delete-Redundant-SDC procedure considers the routes in
the current solution consecutively, and, for each route, evaluates
whether or not the solution remains feasible after removing each
SDC. As the triangle inequality holds true, removing a SDC from a
route reduces the route’s length; in the worst case, the route’s
length will remain the same.

Please note that the feasibility after removing a specific SDC j
can be tested by verifying if all the DPs served by j are within
the covering distance (s) of the other SDCs visited in the same
route. If not, this SDC cannot be removed. Once a SDC j is selected,
the algorithm tries to assign as many demand points as possible to
the closest SDC to SDC j. If any of the DPs covered by SDC j remain
uncovered, then the algorithm tries the second closest SDC to j, and
so on until all the DPs originally assigned to j are assigned to the
other SDCs on the same route, in which case j may be removed,
or until all the SDCs on the route have been tested, in which case
the algorithm concludes that j cannot be removed.

4.3.2. Swap procedure
The Swap procedure tests whether or not a different SDC visit-

ing sequence will lead to a shorter route. First, the procedure con-
siders exchanging positions between two SDCs on the same route.
Once all the possible exchanges have been examined, it considers
exchanges involving SDCs on two different routes. These ex-
changes are repeated as long as the solution improves.

Swapping SDCs within a single route is rather simple as the
resulting route is always feasible and the assignment of demand
points to the SDC remains unchanged. Each pair of SDCs on a given
route is considered, and the positions of these two SDCs are
exchanged. The resulting tour lengths are calculated, and the ex-
change producing the largest improvement, if any, is implemented.
Fig. 3 illustrates a swap between j1 and j2 on route k2, where j2 is vis-
ited simultaneously by routes k1 and k2. The procedure is repeated
for each route as long as the total routes length is improved.

Swapping SDCs belonging to two different routes is slightly
more complicated because the vehicle capacities and the demand
delivered at the studied SDCs need to be taken into account. In fact,
each SDC serves different sets of demand points, thus entailing dif-
ferent demands for each product type, so the required vehicle
capacity is also different. It follows that swapping two SDCs on dif-
ferent routes is not always possible due to vehicle capacity.

To better illustrate this point, let us consider the swap between
SDC j1 and SDC j2 visited currently by vehicles k1 and k2, which
have remaining capacities R1 and R2, respectively. Let us also con-
sider the capacity required to satisfy demand served by j1 and j2,
denoted d1 and d2, respectively (d1 ¼

PP
Disj1k1 ws, and

d2 ¼
PP

Disj2k2 ws for all s and i). A swap between j1 and j2 is only
possible if the following swap feasibility condition is satisfied:
min(R1 + d1 � d2;R2 + d2 � d1) P 0.

Split delivery causes another difficulty to deal with. If a SDC
considered for a swap is visited by n different routes (i.e., a split
SDC), then n different swaps are possible. Let us assume that j1,
which is visited by vehicle k1, is selected to be swapped with j2,
which is visited by vehicles k2 and k3. In this case, two possible ex-
changes are possible: (1) j1 is visited by k2, with j2 being visited by
k1 and k3, and (2) j1 is visited by k3, with j2 being visited by k1 and
k2. This situation is shown in Fig. 4, in which (a) illustrates a feasi-
ble solution before the swap, and (b) and (c) illustrate the two pos-
sible swaps described above.

It follows that, if j1 is visited by n vehicles and j2 is visited by m
vehicles, then n⁄m different possible swaps need to be evaluated.
Taking into account all these particularities, the swaps between
SDCs on the different routes is done as follows:

1. The algorithm starts by choosing arbitrarily the first route (or
vehicle) k1, and its first stop on the route, j1.

2. The algorithm builds a list containing the / SDCs closest to j1,
but not on the same route. Restricting the number of SDC to
be swapped limits the computational effort required to evaluate
the potential swaps.

3. The algorithm evaluates all the swaps between j1 and each of
the SDCs in the list. To this end, the feasibility test is performed.
If the test is satisfied, the total length of the two routes con-
cerned, before and after swap, are computed and stored. If the
SDC being considered in the swap is visited by more than one
route, all the potential swaps need to be evaluated.



Fig. 2. Algorithmic structure of our heuristic.

Fig. 3. Swapping with a SDC visited by two routes.
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The procedure is repeated for all the stops in route k, and then
applied in the exact same way to the other routes in the solution.
The parameter /, which defines the size of the neighborhood to ex-
plore, needs to be set carefully by the decision-maker. In fact, as /
increases, more potential swaps are evaluated. However, as / in-
creases, the SDCs that are at a greater distance are considered,
but their chances of reducing the total distance decreases.
4.3.3. Drop & Add procedure
It could happen that, for a current non-optimal route, visiting

more and different SDCs leads to a shorter route length. In addi-
tion, when considering a SDC visited by two or more routes, replac-
ing this SDC by one or more neighboring SDCs that are not in the
current solution may also improve the solution’s total route length.
These two situations are illustrated in Fig. 5. In Fig. 5a, SDC j1 is re-
placed by j2 and j3, thus reducing the total length of the route in
Fig. 4. Possible swaps when one of the se
Fig. 5b. In Fig. 5c, j1 is visited by k1 and k2. After the Drop & Add pro-
cedure, in Fig. 5d, j1 is replaced by j2 and j3, thus reducing the total
distance of k1 + k2.

The goal of the Drop & Add procedure is to remove a SDC and re-
place it with a subset of unvisited SDCs that decrease the route
length. To this end, a visited SDC is selected and removed from
the current solution. Thus, some DPs will eventually become
uncovered, so the algorithm tries to assign them to other closest
SDCs visited on the same route. Still, if demand points remain
uncovered, the algorithm tries to cover them by adding one or
more unvisited SDCs to the solution. The algorithm considers
unvisited SDCs to add according to their increasing distance to
SDC j, which has been removed. If the closest SDC j0 is able to cover
at least one uncovered DP, j0 is added to the route so that the new
route’s length is minimized; then, as many uncovered DPs as pos-
sible are assigned to j0. The algorithm adds unvisited SDCs until the
solution becomes feasible again.

This procedure is performed for every SDC in the current solu-
tion. The replacement leading to the shortest total length is imple-
mented, even if the total length of the current route is increased
with the less damaging exchange.

4.3.4. Extraction–Insertion procedure
The Extraction–Insertion procedure moves one SDC from one

route to another. To this end, the algorithm selects a SDC j, cur-
rently visited by vehicle k, and tries to evaluate if j could be served
by another vehicle k0. This is done by checking if the remaining
capacity of each of the other vehicles Rk0 is equal or greater than
the volume required to transport the total demand covered by
SDC j, denoted dj dj ¼

P
i

P
sDisjkws

� �
. If transferring j from route k

to route k0 is possible, then the algorithm inserts j into k0 so that
k0 route length increase is minimized. For each SDC, the algorithm
evaluates every possible transfer and implements the one resulting
in the lowest route length, if it improves the current solution. The
procedure is repeated as long as improvements are found.

4.4. Diversification procedure

The goal of the Diversification procedure is to perform a soft
diversification of the incumbent solution by adding r unvisited
SDCs to the solution. The rationale behind this procedure is to give
the solution some flexibility that will, hopefully, allow the local
search to perform changes in the solution structure at the follow-
ing iteration. To this end, each time the local search loop is fin-
ished, the Diversification procedure selects randomly u unvisited
SDCs and inserts each of them into the routes of the current solu-
tion so that the insertion cost (i.e., the increasing route length of
the solution) is minimized.

This is done in the following manner. After selecting an unvis-
ited SDC j1 with uniform probability, the procedure identifies j2,
lected SDCs is visited by two routes.



Fig. 5. Examples of potential improvements by Drop & Add.
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the closest SDC to SDC j1 already used in the current solution. Then,
the algorithm evaluates the insertion of j1 before and after j2, and
the solution that minimizes the total route length of the solution
is retained. If j2 is visited by several vehicles, then j1 will be visited
by the same vehicles and, for each of these vehicles, the relative
position of j1 with respect to j2 is given by the minimal cost inser-
tion rule. Finally, the algorithm tries to reallocate as many demand
points as possible from their current assignment to j1.

The Diversification procedure completes the main search algo-
rithm (Fig. 2). Thus, assuming that the predefined number of iter-
ations (#_iterations) has not yet been reached, the next procedure
to be executed will be the Delete-Redundant-SDC procedure, which
may eliminate the SDC just added by the Diversification procedure.
To prevent the algorithm from doing so, the r newly SDC are put a
kind of tabu-list for the next application of the Delete-Redundant-
SDC procedure.

5. Computational results

This section has three objectives: (1) identify the parameter
combination that produces the best results, (2) identify the limits
of the mathematical model, and (3) evaluate the quality of our heu-
ristic approach in terms of both computational time and objective
function. To this end, we built a set of numerical experiments
based on randomly-generated data. The instances are character-
ized by the number of demand points (n), the number of potential
SDCs (m), the number of different products to distribute (t), and the
number of vehicles available (l). For each DP and each potential
Table 2
Heuristic parameters setting.

#_iterations #_LocalSearch_iterations u

10 10 3
5
7

15 3
5
7

20 3
5
7

20 10 3
5
7

15 3
5
7

20 3
5
7

The numbers in italics correspond to the best average solution.
SDC, the coordinates were uniformly generated within a [0, 100]
square. Distances between each pair of sites cij were computed as
the Euclidean integer distance. All the models were coded in Java,
and the branch-and-bound algorithm of CPLEX 11.0 (with its de-
fault parameters) was used to solve the instances on a 3.00 GHz In-
tel Core 2 Duo PC with a 4.00 Go RAM. All the computation times in
the rest of this paper are reported in seconds.

5.1. Setting the heuristic’s parameters

Our heuristic is based on the parameters that influence the
quality of the final solution. In order to evaluate the impact of these
parameters, we generated 20 instances with n = 100 demand
points, m = 20 satellite distribution centers, t = 2 types of product
and l = 2 vehicle types. We fixed the number of restarts to 3000
and considered the following parameter combinations:

� Number of iterations (#_iterations) : 10, 20
� Number of local search iterations (#_LocalSearch_iterations):

10, 15, 20
� Number of SDCs considered in the swap (/): 4, 6, 8
� Number of SDCs considered in the diversification (u): 3, 5, 7

Table 2 presents the numerical results associated to the 54 com-
binations that we used to calibrate the parameters. Our heuristic is
not too sensitive to the parameters, since the worst average solu-
tion over 20 instances was 1288.15, and the best average solution
was 1265.00. The most important parameter seems to be the
/

4 6 8

1283.95 1274.45 1277.35
1278.50 1272.15 1268.90
1284.30 1276.00 1274.20
1285.25 1274.20 1273.45
1280.35 1279.45 1270.85
1277.00 1273.75 1275.95
1283.85 1277.80 1279.20
1278.55 1278.55 1271.85
1279.35 1276.90 1273.75

1288.15 1270.10 1272.35
1277.30 1270.10 1265.00
1278.45 1278.75 1276.55
1280.70 1277.50 1274.70
1279.40 1277.70 1277.20
1286.05 1273.20 1272.40
1273.05 1282.45 1272.00
1270.70 1277.60 1270.40
1277.30 1279.10 1272.60



Table 3
Numerical results for the small instances (n = 20 DPs).

Set SDC Products Vehicles Exact Heuristic

Cost Seconds Cost Gap (%) Seconds

1 4 2 2 284.00 0.31 284.00 0.00 3.29
2 4 2 3 226.20 0.22 226.20 0.00 3.30
3 4 2 4 212.60 0.57 212.60 0.00 3.43
4 4 3 2 464.80 8.57 465.60 0.17 6.51
5 4 3 3 417.60 1.98 421.60 0.96 5.29
6 4 3 4 313.60 1.37 317.00 1.08 4.05
7 4 4 2 813.60 52.58 813.60 0.00 12.19
8 4 4 3 628.00 19.30 628.00 0.00 9.12
9 4 4 4 497.40 5.08 497.40 0.00 6.79

10 6 2 2 208.60 5.22 208.60 0.00 4.59
11 6 2 3 183.80 8.77 183.80 0.00 4.62
12 6 2 4 134.40 2.89 134.40 0.00 4.32
13 6 3 2 435.60 100.87 435.60 0.00 8.03
14 6 3 3 347.40 46.48 347.40 0.00 6.73
15 6 3 4 265.80 10.23 265.80 0.00 5.88
16 6 4 2 694.40 734.94 694.40 0.00 15.20
17 6 4 3 564.00 746.87 564.00 0.00 12.26
18 6 4 4 444.20 266.69 444.20 0.00 9.79
19 8 2 2 301.40 367.82 301.40 0.00 5.49
20 8 2 3 265.40 363.98 265.40 0.00 5.11
21 8 2 4 228.60 31.01 228.60 0.00 5.08
22 8 3 2 430.60 783.29 430.60 0.00 10.06
23 8 3 3 356.00 469.30 355.80 �0.06 8.84
24 8 3 4 286.80 313.87 286.80 0.00 8.04
25 8 4 2 722.80 942.80 713.40 �1.30 15.12
26 8 4 3 542.80 805.38 538.20 �0.85 12.16
27 8 4 4 432.20 731.40 432.20 0.00 10.00
28 10 2 2 265.40 364.25 265.40 0.00 5.09
29 10 2 3 230.20 42.76 230.20 0.00 5.25
30 10 2 4 218.60 41.76 218.60 0.00 5.72
31 10 3 2 355.00 1180.55 354.80 �0.06 9.95
32 10 3 3 296.00 426.89 296.60 0.20 8.31
33 10 3 4 245.80 488.41 245.80 0.00 8.09
34 10 4 2 624.40 1672.34 616.40 �1.28 14.31
35 10 4 3 517.60 1156.36 516.60 �0.19 11.70
36 10 4 4 406.60 813.56 406.60 0.00 9.72
Average 361.35 �0.11 7.87
Minimum 0.22 �1.30 3.29
Maximum 1672.34 1.08 15.20

Table 4
Results for instances with n = 30 DP.

Set SDC Products Vehicles Exact Heuristic

Cost Gap (%) Seconds Cost Gap (%) Seconds

1 9 3 3 528.20 14.45 4924 526.40 �0.34 17.72
2 9 3 4 925.60 34.83 5829 906.00 �2.12 31.53
3 9 4 3 421.40 7.37 3127 421.20 �0.05 15.14
4 9 4 4 665.80 28.31 5784 675.60 1.47 24.29
5 12 3 3 504.80 28.49 7200 503.20 �0.32 18.83
6 12 3 4 903.80 50.90 7200 857.20 �5.16 32.31
7 12 4 3 419.20 17.90 6002 418.00 �0.29 15.97
8 12 4 4 691.60 39.02 7200 662.60 �4.19 24.92
Average 27.66 5908 �1.37 22.59

Table 5
Results for instances with n = 40 DP.

Set SDC Products Vehicles Exact Heuristic

Cost Gap (%) Seconds Cost Gap (%) Seconds

1 12 3 3 655.80 47.58 7200 632.20 �3.60 31.76
2 12 3 4 1191.80 59.86 7200 1120.80 �5.96 54.74
3 12 4 3 503.60 53.34 7200 487.20 �3.26 26.90
4 12 4 4 1011.80 57.81 7200 961.00 �5.02 46.34
5 16 3 3 652.60 58.88 7200 478.00 �26.75 30.75
6 16 3 4 976.00 65.74 7200 931.00 �4.61 60.65
7 16 4 3 463.60 46.78 7200 384.00 �17.17 26.55
8 16 4 4 791.80 64.89 7200 769.00 �2.88 50.29
Average 58.86 7200 �8.66 41.00
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Table 6
Results for instances with n = 50 DP.

Set SDC Products Vehicles Exact Heuristic

Cost Gap (%) Seconds Cost Gap (%) Seconds

1 12 3 3 843.60 67.35 7200 775.80 �8.04 50.00
2 12 3 4 660.60 63.70 7200 582.20 �11.87 41.89
3 12 4 3 1432.00 75.01 7200 1350.40 �5.70 90.86
4 12 4 4 1089.60 73.08 7200 996.00 �8.59 69.22
5 16 3 3 807.80 71.23 7200 720.80 �10.77 57.29
6 16 3 4 627.00 63.74 7200 561.40 �10.46 49.10
7 16 4 3 1310.00 81.67 7200 1146.40 �12.49 88.42
8 16 4 4 984.80 79.77 7200 861.40 �12.53 72.74
Average 71.94 7200 �10.06 64.94
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number of iterations (i.e., the number of times that the global loop,
including the diversification, is applied). The performance does not
seem to be linked to the number of local search iterations, which
means that the best solution may be obtained early on. Conse-
quently, in all the forthcoming tests, we used the following param-
eters: #_iteration = 20, #_LocalSearch_iterations = 10, u = 5 and /
= 8.
5.2. Computational results

In this sub-section, our heuristic’s performance is compared to
the performance of Cplex in order to evaluate the optimality gap
produced by the heuristic. We generated some other instance sets
in order to establish independence from the instances used to cal-
ibrate our parameters. These new instances are smaller so that
they can be managed by Cplex. For these new instances, four cate-
gories of vehicles are considered. Their capacities are {50, 75, 100,
150} units, respectively. The instances with different vehicle types
(l = 2, l = 3 and l = 4) have vehicle capacities of {50, 75}, {50, 75,
100}, and {50, 75, 100, 150} units, respectively. For a given in-
stance, the vehicles are added until their total capacity is equal
or greater than the total demand, multiplied by a factor of 1.2.

Table 3 shows the results obtained for these small instances,
with only n = 20 demand points. We generated five instances for
each combination of the number of SDC (m = 4, 6, 8, and 10), the
number of products (t = 2, 3, and 4), and the number of vehicles
(l = 2, 3, and 4). This lead to 36 sets of five instances each, for a total
of 180 instances. Each line in Table 3 reports the average cost over
five instances.

The results of the mathematical model (Section 2) are provided
under the header, Exact, and our heuristic approach (Section 4) un-
der the header, Heuristic. Column Gap (%) refers to the average cost
percentage of the heuristic solution over the exact solution (or the
best integer solution, if proof of optimality was not obtained). For
these small instances, Cplex was allowed to run for up to 1800 s.
Within this time limit, it was able to give proof of optimality in
152 out of 180 cases. The average computational times range from
only a fraction of a second up to more than 1600 s, but, overall,
Cplex is efficient solving these kinds of instances.

The figures in Table 3 confirm the excellent performance for our
heuristic. In fact, for 26 out of 36 sets, the heuristic average gap
was 0%, which means that, for the five instances in each of these
26 sets, the heuristic found the best known solutions. For the other
six sets (italics in Table 3), the average gap of the heuristic was
negative, meaning that the heuristic produces a better solution
than Cplex in the allotted time. Globally, the heuristic average
gap is �0.11, with an average computing time of 7.8 s.

In Tables 4–6, we report the results of the larger instances in or-
der to evaluate the ability of our heuristic to solve real problems
efficiently. We generated 24 new sets of five instances each, with
different combinations of numbers of DP, SDC, products and
vehicle types. The instances – which had up to 50 DP, 20 SDC, four
products and four vehicle types – were solved by running Cplex for
up to 7200 s for each instance. For these new 120 instances, Cplex
was only able to find eight proven optimal solutions, all of them for
n = 30 DP instances, shown in Table 4. However, the average opti-
mality gap of Cplex was 27.66%. For Tables 4–6, the gap for the
heuristic was computed against Cplex’s best-known integer solu-
tion. Table 4 shows that the heuristic improves Cplex results by
1.37%, using an average of only 23 s of computing time.

Results with n = 40 and 50 clients are presented in Tables 5 and
6. For these instances, Cplex always reaches the maximum time
limit of 7200 s per instance, resulting in optimality gap of 56.86
for 40 DP and of 71.94% for 50 DP. Clearly, Cplex has become inef-
ficient at solving these instances.

For the 40-DP instances, our heuristic improves the Cplex re-
sults by 8.66% in only 41.00 s. The results for the 50-DP instances
are reported in Table 6: the average improvement is 10.06% in only
64 s of computing time. These results clearly demonstrate that the
heuristic produces high-quality solutions in very short computing
times.

6. Conclusions

This article tackles the location of satellite distribution centers
(SDCs) used to deliver humanitarian aid to the population in a
disaster area. We model this situation as a generalization of the
covering tour problem. Our numerical experiments on randomly-
generated data confirm that only very small instances can be
solved efficiently using the mathematical model. We proposed a
heuristic approach to solve instances whose size could be of prac-
tical interest. Our multi-start heuristic produces high-quality solu-
tions and solves realistic instances in reasonable computing times.
Both in small and large instances, our heuristic produced better
average results than Cplex in only a fraction of the computing time.
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