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a b s t r a c t

Natural disasters often result in large numbers of evacuees being temporarily housed in schools,
churches, and other shelters. The sudden influx of people seeking shelter creates demands for emergency
supplies, which must be delivered quickly. A dynamic allocation model is constructed to optimize pre-
event planning for meeting short-term demands (over approximately the first 72 h) for emergency
supplies under uncertainty about what demands will have to be met and where those demands will
occur. The model also includes requirements for reliability in the solutions e i.e., the solution must
ensure that all demands are met in scenarios comprising at least 100a% of all outcomes. A case study
application using shelter locations in North Carolina and a set of hurricane threat scenarios is used to
illustrate the model and how it supports an emergency relief strategy.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Disaster management is the sequence of operations that seek to
prevent or reduce the injuries, fatalities, and damages resulting
from a disaster; and to facilitate the recovery from such an event.
This process is comprised of four sequential stages occurring during
the life cycle of the disaster (e.g., mitigation, preparedness,
response and recovery). During the mitigation stage actions are
taken to prevent the onset of the disaster or moderate its effects.
The preparedness stage aims at decreasing the response time by
the advanced procurement and pre-positioning of needed supplies.
In the response stage, the disaster mitigations plans are activated
and the emergency supplies are mobilized. The final steps of
emergency relief (i.e., retrieving the victims, rebuilding the infra-
structure, and mitigating damages in the disaster zones) occur
during the recovery phase [1]. This paper focuses on the
preparedness and the response stages, specifically the pre-
positioning of supplies for sheltered victims and the timely distri-
bution of the supplies during the progression of the event.

Pre-positioning of emergency supplies is a means for increasing
preparedness for natural disasters. Key decisions in pre-positioning
are the locations and capacities of emergency distribution centers,
ax: þ1 (607) 255 9004.
Rawls), mat14@cornell.edu
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as well as allocations of inventories of multiple relief commodities
to those distribution locations. Extreme events such as tornados,
floods, earthquakes or hurricanes create situations where large
numbers of people may be directed to shelters and require food,
water, medical supplies, etc. for survival. For emergency response
efforts to be effective in providing assistance to disaster victims,
certain vital supplies should be close at hand, but the shelter
locations themselves (often schools, churches, sports arenas, etc.)
may not have suitable storage facilities. Furthermore, uncertainty
about where (and whether) an event will occur makes it useful to
consider specifically located storage facilities that can distribute
materials to several different shelter locations in quantities that
match needs in a specific incident.

Pre-positioning provides numerous benefits to relief organiza-
tions [1]. First, supplies stored in a pre-positioned network reduce
the response time assisting disaster victims. Second, through the
advanced procurement of supplies humanitarian organizations can
consider local, regional and international suppliers, and attain
better prices for the items. Third, by buying in larger volumes
humanitarian organizations can increase their purchasing power
and take advantage of lower bulk prices.

In this paper, our concern is with short-term demands at shelter
locations (in approximately the first 72 h after an evacuation is
ordered, or after an event occurs). During these initial hours,
evacuees are arriving at shelter locations, initial provision of
needed relief supplies is critical and there is little opportunity for
meeting that demand from distant suppliers. The total number of
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Fig. 1. General pattern of arrivals at a shelter location.
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people responding to an evacuation order over time is frequently
represented by an S-shaped curve, as shown in Fig. 1 [2,3]. The
shape, height and time-scale of the curve shown in Fig. 1 will be
scenario- and location-dependent. Because the number of evacuees
arriving at a given shelter location is unknown prior to the event,
and evolves over time during an event, a dynamic model of supply
delivery is important. However, the ability of the distribution
system to respond dynamically as the situation evolves is limited by
pre-event planning decisions on locations and amounts of mate-
rials that are available. Thus, we want an integrated model of the
pre-event planning decisions and the during-event (or immedi-
ately post-event) dynamic distribution decisions.

Several previous authors have addressed problems of post-
event distribution of emergency supplies. Important examples
include thework of Haghani and Oh [4], Sheu [5], Houming et al. [6]
and Yan and Shi [7]. Thesemodels assume that the characteristics of
the event, the resulting demands for the supplies, the locations and
the available quantities of those supplies, and the condition of the
transportation network are known. Haghani and Oh [4] developed
a multi-commodity multi-mode network flow model to help
emergency response managers organize detailed load plans for
moving commodities after an event. Barbarosoglu and Arda [8]
extended that model to consider uncertainties in available
supplies, demands and network arc capacities through definition of
a set of scenarios. This opens opportunities for connections to pre-
event planning, but Barbarosoglu and Arda [8] assume that the
locations and availability of supplies are given exogenously. Related
work has been done by Ozdamar et al. [9], who created a dynamic
model to generate multi-period vehicle routes and schedules along
with commodity load-unload assignments.

A different aspect of managing uncertainty in relief supply
distribution is represented in the work of Ozbay and Ozguven [10].
They propose an inventory model for determining the stocking
level of a commodity subject to uncertain demands and delivery
schedules at a shelter location or relief distribution point, so that
there is a “stock out” probability no larger than a specified value.
This inventory question is important for managing materials at the
demand points, but their work does not address location issues or
determination of distribution strategy over time.

Other research efforts have been aimed at devising pre-
positioning plans for emergency supplies. Ukkusuri and Yushimito
[11] develop amodel to choose locations for pre-positioned supplies
in a way that maximizes the probability that demand points can be
reached from at least one supply facility under conditions where
facility locations and links in the transportation network may
become unusable. Akkihal [12] examines the impact of inventory
pre-positioning on humanitarian operations through a supply-chain
perspective. The objective of hismodel is tominimize the per-capita
or the average global distance from the nearest warehouse to the
forecasted hazard victims. Balcik and Beamon [13] develop
amaximal covering locationmodel that determines the number and
location of fixed-capacity distribution centers in a relief network,
and the amount of relief supplies to be stocked at each center. The
model considers pre- and post-disaster budget restrictions but does
not consider network reliability. Demands are specified through the
use of scenarios, but there is an implicit assumption that in each
scenario there is demand in only one location.

Duran et al. [14] used a mixed-integer inventory location model
to evaluate the effects of pre-positioning of relief items on the
average response time of a major international organization (CARE
International) aiding victims of natural disasters (e.g., earthquakes,
windstorms, wave surges, and floods). The solution is constrained
by a maximum allowed number of warehouses and limits on
inventory levels kept in the pre-positioning network. Rawls and
Turnquist [15] present a two-stage stochastic programming model
for determining pre-positioning storage locations and capacities, as
well as allocating quantities of various emergency commodities to
be stored at each location. These “first-stage” decisions (i.e., made
before characteristics of any event are known) condition the
potential response to specific possible events (scenarios). The
responses (“second-stage” decisions) are movements of available
supplies to meet demands in specific locations impacted by a given
event scenario, over a transportation network that may have
limited capacity due to damage incurred in the event. The two-
stage model minimizes total expected costs (facility fixed charges,
acquisition and storage of supplies, transportation and penalties for
unmet demand) over all scenarios.

The model in Rawls and Turnquist [15] provides a springboard
for the work described here. In this effort, we extend the static
model of demand in each scenario from the earlier model tomake it
dynamic and specifically related to the arrival of evacuees at shelter
locations over time. The new solution determines the most auspi-
cious supply distribution pattern per time period and scenario
based on the timely needs of the evacuees at the shelters, the
limited storing capacity of the shelter, the capacity of the shipment
travel modes, and the rate at which storing facilities can dispatch
the supplies. Also, the newmodel includes the concept of reliability
that guarantees with a% certainty that demand would be met with
the pre-positioned arrangement suggested by the solution.

The remainder of the paper is organized as follows. Section 2
describes the model formulation. In Section 3, we use data devel-
oped for an assessment of hurricane shelter locations in North
Carolina as the basis for a case study in pre-positioning supplies.
Section 4 provides conclusions and directions for further research.

2. Model formulation

In planning for arrivals at shelter locations, a specific policy on
provision of emergency supplies forms the basis for plans. Many
different policies are possible, but one example (for consumable
materials) would be: “Enough material should be present at the
shelter location by t¼ 12 h to handle anticipated needs over the
first 48 h. By time t¼ 24 h, there should be enough material to
handle the first 72 h. Each day after that, enough additional
material should be received to cover one more day of anticipated
needs, so that a two-day supply is maintained on hand in the event
of further disruptions.” The important aspect of a policy is that it
specifies the parameters that drive demands for material over time
at specific shelter locations in a particular event.

The quantity implications for consumable materials (food,
water, etc.) can be related to the arrival function in Fig. 1. An
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Fig. 2. Graphical representation of a policy on provision of consumable materials and
its relation to arrival of evacuees.
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example reflecting the specific policy described in the previous
paragraph is illustrated in Fig. 2. The demands are related to both
the number of evacuees and their time in the shelter, reflected in
Fig. 2 as areas under the cumulative arrivals curve.

For non-consumable material, the criterion is to have supplies
available at the shelters ahead of arrival of the evacuees, and
a policy might be of the form: “By t¼ 12 h, have at least one-half of
the total anticipated supplies in place, with the remainder available
by t¼ 24 h.” This policy also relates timing and quantity of demands
for material to the forecast arrivals of evacuees at a shelter location
in a particular event.

Because different events create varying numbers of evacuees in
different locations, the demand for commodity k at location j in time
period t, vkjt , is uncertain. This uncertainty ismodeled through theuse
of a set S of discrete scenarios indexed by s˛ S, each with a proba-
bility of occurrence, Ps. The definition of a scenario includes the
forecasted cumulative demand by commodity, location and time, vksjt .

We define a set of time periods, t¼ 1, 2,.,T. For example, we
might use four time periods defined relative to the onset of activity:
0e12 h, 12e24 h, 24e48 h, and 48e72 h. The model does not
require that the time periods considered be of equal duration.

We consider a set of commodities that may be pre-positioned in
storage facilities and for which there is likely to be demand during
and after an event. In the example application in Section 3, we
consider two generic commodities (“consumables” e e.g., food,
bottled water, etc.; and “non-consumables” e e.g., cots, blankets,
etc.). This allows us to differentiate between commodities for
which the demand is duration-dependent and those for which it is
not. In a general application of this model, a larger set of individual
commodities might be considered, including ice, clothing, medical
supplies and other types of items. The set of commodities is
denoted by K and indexed by k˛ K. In the aftermath of an event,
therewill be demands for these commodities at specific locations in
a set J, indexed by j˛ J. These locations will include designated
shelters as well as selected other distribution points.

Supplies can be pre-positioned at locations indexed by i. Some
of these locations (a set I) will correspond to places where a storage
facility can be leased. Some shelter locations can also accommodate
some storage of material, and we will use I0 to denote the set of
shelter locations where material storage is possible. At the shelter
locations i˛ I0, there are capacity limits, Ei on the total volume of
material that can be stored. At locations that are not designated
shelters, leasing a storage facility to make it available results in
a fixed cost. For costing purposes, we define leased facilities to be in
one of a discrete set, L, of size categories, indexed by l˛ L. The
overall capacity (e.g., square feet of floor space or cubic feet of total
space) of a facility in category l isMl, and choosing to open a facility
of size category l in location i˛ I incurs a fixed cost, Fil. Let yil be
a binary decision variable equal to 1 if there is a supply facility of
capacity category l located at node i, and 0 otherwise. This is one of
the primary sets of decisions in the model.
If a facility is made available at location i, various commodities
can be stocked there, subject to the capacity limits of the facility. Let
bk be the unit space requirement for commodity k, and ri

k be the
amount of commodity k pre-positioned at location i˛IWI0. The ri

k

values are the second major set of first-stage decision variables in
the model. A decision to stock a particular commodity results in
a unit acquisition cost, qk. Material of type k that is not used in
scenario s, denoted zksi , incurs an additional unit holding cost, hk

(accounting for inventory-related or spoilage costs).
In each scenario, the optimization attempts to distribute avail-

able supplies of each commodity to meet demands at the various
shelters and other locations. Let ckij be the unit cost of transporting
commodity k from source i to destination j, and let xksijt be the
amount of commodity k shipped in period t for scenario s.

In addition to limited total amounts of each commodity available,
there are three types of constraints on the shipment of available
supplies. First, the storage locations are limited in the rate at which
they can load and dispatch trucks. This rate is assumed to be related
to the facility size, and be specified as a series of constants, Ctl, which
specify the cumulativemaximum amount that a facility of size class l
can dispatch by the end of period t. Second, there may be a lag
between truck dispatch from storage location i and receipt of the
material at demand location j. Wewill denote this lag as hij. If storage
location i anddemand location j are quite close andwe are using time
periods of 12 or 24 h, there may be many pairs for which hij¼ 0 (i.e.,
the shipment arrives within the same period as dispatch). However,
for locations that are more distant from one another, there may be
a lag of one or more periods between dispatch and receipt. Third,
transportation linksmaybedamagedordestroyed in somescenarios,
so we specify a scenario-dependent capacity, Us

ijt , on transporting
material from i to j at time t. The time-dependence of these capacity
constraints allows the model to incorporate the possibility of some
restoration of capacity over time for damaged links.

If not enough material of commodity k can be supplied to
location j by time t to meet the cumulative demand, a shortage
occurs. Fig. 3 shows a situationwhere a shortage occurs in periods 1
and 2, which is alleviated by period 3. The area between the
cumulative demand values and the cumulative arrival of material
represents a total shortage, which is penalized in the objective
function of the model. The difference between cumulative demand
and delivered material at time t is denoted aswks

jt . If we assume that
the discrete points at periods t are connected by straight lines (as in
Fig. 3), the total shortage area for location j, commodity k and
scenario s can be computed as a simple linear function of the wks

jt
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values,
P
t
4twks

jt , where the coefficients 4t depend on the number
and duration of the time periods. These shortages can be converted
to costs using penalty coefficients, pk, in the objective function.

The model provides a confidence level (denoted a) that suffi-
cient supplies exist in the network to meet all demands. The idea of
using a confidence level onmeeting all demands draws on previous
work by Daskin et al. [16] and Chen et al. [17]. Daskin et al. [16]
introduced the idea of an “a-reliable” location model, in which
the user defines a set of scenarios, each with a probability of
occurrence. The model then endogenously selects a subset of the
scenarios (termed the reliability set) whose collective probability of
occurrence is at least a and optimizes a measure of performance
over that selected subset of scenarios. For Daskin et al. [16], the
selected measure of performance was minimizing the maximum
regret over scenarios in the reliability set. Chen et al. [17] extended
this idea byminimizing the expected value of the regrets associated
with the extreme scenarios (i.e., scenarios previously ignored by
the a-reliable minimax regret model) which have a collective
probability of occurrence of (1� a).

We have adopted the idea of having the model endogenously
select the reliability set of scenarios, but use that set in a different
way. In our model, the objective function is an expected cost over
all scenarios, but for scenarios in the reliable set, all demand must
be satisfied (i.e., wks

jt ¼ 0). A binary decision variable (gs) indicates
if a scenario s is included in the reliable set.

The model is formulated as an optimization problem (P1), in
which the objective is to minimize the expected costs resulting
from the selection of the pre-positioning locations and facility sizes,
the commodity acquisition and the stocking decisions, the ship-
ments of the supplies to the demand points, unmet demand
penalties and holding costs for unused material.

ðP1Þ min
X
i˛I

X
l˛L

Flyil þ
X
k˛K

X
i˛IWI0

qkrki þ
X
s˛S

Ps

2
4X

i;j

X
k˛K

�
X
t

cksij x
ks
ijt þ

X
i˛IWI0

X
k˛K

hkzksi þ pk
X
j

X
k

X
t

4tw
ks
jt

3
5 ð1Þ

Subject to:
Flow accounting

zksi ¼ rki �
X
j˛J

X
t

xksijt c i˛IWI0; k˛K; s˛S (2)

vksjt �
X
i˛IWI0

Xt�hij

s¼1

xksijs �wks
jt � 0 c j˛J; k˛K; s˛S; t ¼ 1;.; T (3)

X
i˛IWI0

XT

s¼1

xksijs � vksjT c j˛J; k˛K; s˛S (4)

Open facilities

X
l˛L

yil � 1 c i˛I (5)

Facility storage and dispatch capacity

X
k˛K

bkrki �
X
l˛L

Mlyil c i˛I (6)

X
k˛K

bkrki � Ei c i˛I0 (7)
Xt X X
ukxksijs �

X
CtlMlyil c i˛I; s˛S; t ¼ 1;.; T (8)
s¼1 j˛J k˛K l˛L

Transport arc capacity

X
k˛K

ukxksijt � Us
ijt c i˛I; j˛J; s˛S; t ¼ 1;.; T (9)

Reliability set definition

X
s˛S

psgs � a (10)

Demand requirements for scenarios in reliable set

wks
jt � vksjt ð1� gsÞ c j˛J; k˛K; s˛S; t ¼ 1;.; T (11)

Binary constraints

yil˛ð0;1Þ c i˛I; l˛L
gs˛ð0;1Þ c s˛S (12)

Non-negativity constraints

rki � 0 c i˛I; k˛K
xksijt � 0 c i˛I; j˛J; k˛K; s˛S; t ¼ 1;.; T

zksi � 0 c i˛I; k˛K; s˛S
wks

jt � 0 c j˛J; k˛K; s˛S; t ¼ 1;.; T

(13)

Constraint (2) defines the unused stocks in each scenario ðzksi Þ.
Constraint (3) defines the unmet demand ðwks

jt Þ, and constraint (4)
restricts the solution from shipping extra material to avoid the
holding costs on unused stocks. Constraint (5) limits the number of
open facilities at node i to one. Constraint (6) makes certain that
stocked commodities at non-shelter locations are assigned to open
facilities and that the space taken by these resources does not
exceed the facility capacity. Constraint (7) limits the amount of
material that can be stocked at the shelters. Constraint (8) repre-
sents the limits on the amount of material that can be shipped from
a storage location by time t. Constraint (9) limits total iej flow
within each time period to the capacity available in each scenario. A
unit of commodity k flowing from i to j requires capacity uk. In
many cases, the unit measures for commodity storage (bk) and
transport (uk) may be the same, and only one value is necessary.
However, the formulation allows for different measurement units,
if desired. Constraint (10) defines the reliable set by determining
which scenarios are included in the planning set. Constraint (11)
ensures that demand is met for all scenarios included in the reli-
able set.
3. Case study application

As an illustration of the application of the model described in
Section 2, we focus on meeting the demands for consumable and
non-consumable goods in shelters for hurricane events that affect
coastal North Carolina. Legg et al. [18] have created a set of hurri-
cane scenarios and probabilities to match the historical regional
hazard in North Carolina as closely as possible. Li et al. [19] in
a study of evacuation and sheltering policies for North Carolina,
used those scenarios to identify a set of 50 optimal shelter locations,
selected from among a larger set of locations that are potential
shelters. For each scenario, HAZUS-MH [20] is used to estimate the
total number of people in each census tract that evacuate and seek
public shelter. One of the results of the analysis done by Li et al. [19]
is an estimate (by scenario) of the number of evacuees seeking
shelter in each of the selected locations. We have used the same set



Table 1
Possible storage facility locations.

Index City County

1 Sanford Lee
2 Louisburg Franklin
3 Smithfield Johnston
4 Raleigh Wake
5 Durham Durham
6 Nashville Nash
7 Gastonia Gaston
8 Lincolnton Lincoln
9 Charlotte Mecklenburg
10 Fayetteville Cumberland
11 Dunn Harnett
12 Laurinburg Scotland
13 Lumberton Robeson
14 Raeford Hoke
15 Hickory Catawba
16 Statesville Iredell

Table 2
Hurricane demands and probabilities by scenario.

Scenario Probability Demand

Consumables Non-consumables

1 0.0127 219639 62,292
2 0.0101 171,663 48,686
3 0.0254 137,833 39,091
4 0.0101 132,471 37,569
5 0.0152 128,726 36,507
6 0.0025 100,977 28,641
7 0.0254 100,430 28,483
8 0.0178 79,578 22,570
9 0.0051 68,171 19,333
10 0.0584 66,558 18,875
11 0.0025 56,833 16,115
12 0.0152 50,244 14,249
13 0.0051 39,581 11,223
14 0.0482 37,356 10,595
15 0.0101 36,719 10,413
16 0.0025 35,267 10,002
17 0.0127 34,657 9828
18 0.1015 30,260 8581
19 0.0127 27,599 7825
20 0.0355 27,294 7740
21 0.0624 18,141 5145
22 0.0012 15,235 4320
23 0.0392 14,011 3974
24 0.0355 13,566 3848
25 0.0076 12,818 3636
26 0.0521 11,241 3188
27 0.1015 10,105 2865
28 0.0521 9373 2660
29 0.0051 8504 2411
30 0.0051 8189 2322
31 0.0533 7710 2185
32 0.0521 4583 1300
33 0.1041 3947 1120
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of scenarios, probabilities, shelter locations and numbers of evac-
uees as input to our work.

The shelters include facilities with capacities between 750 and
3000 evacuees. However, each shelter is used in an average of 8 of
the 33 scenarios, andmost are only used to capacity in one or two of
those events. The most frequently used shelters are activated in 17
of the 33 scenarios. Across the set of scenarios, the total number of
evacuees ranges from 1018 to 56,630, with an average of 8637. The
dynamics of the problem are modeled by assuming that 10% of the
total evacuees at a given facility (in a specified scenario) arrive
within the first 12 h, 33% arrive by t¼ 24 h, 90% arrive by t¼ 48 h,
and all arrive by t¼ 72 h.

We use 16 counties as the potential locations for storage facili-
ties for pre-positioned material, with the county seat of each
county used as the point location. The cities and counties are listed
in Table 1. The map in Fig. 4 shows the locations of the 50 shelter
sites as well as the 16 potential storage facility locations.

We have converted the anticipated numbers of evacuees in each
shelter location to a set of demands for consumable and non-
consumable goods in each scenario. The resulting total demands
and scenario probabilities are summarized in Table 2, ordered by
decreasing overall demand. For non-consumable goods, we have
assumed that a unit of demand is the amount of material for one
person, and the total demand at a location is 1.1 times the number
of anticipated evacuees sheltered there in a given scenario. Fifty
percent of the total demand should be provided within the first
12 h (the first time period in the model), and the remainder should
be provided within 24 h (the second time period). A person’s worth
Fig. 4. Shelter and potential mate
of non-consumable goods is assumed to cost $25, and incurs an
additional holding cost of $5.25 if unused. For storage and trans-
portation purposes, we assume that the amount of space required
for one person’s worth of non-consumable material is 6 ft3.

For consumable goods, the arrival pattern of evacuees is trans-
lated into a cumulative demand for person-days’ worth of
consumablematerials, as illustrated in Fig. 5 (shownper 100 people
in the shelter). This translation uses a 5% allowance for spoilage/
waste, and assumes that the amount of material delivered within
the first 72 h needs to be enough to sustain the entire evacuee
population out to t¼ 120 h (5 days after onset of the event). A
person-day of consumable goods is assumed to cost $15, and incurs
an additional holding cost of $3.75 if unused. For the storage and
rial pre-positioning locations.
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Fig. 5. Demand for consumables over four periods in the model.

Table 3
Parameters for potential storage facilities.

Size
Category

Descriptor Fl ($) Ml (ft3) C1 C2 C3 C4

1 Small 20,000 30,000 0.5 1.0 1.0 1.0
2 Medium 48,000 100,000 0.15 0.4 0.7 1.0
3 Large 150,000 400,000 0.1 0.25 0.7 1.0

Fig. 6. Total consumable supplies needed and shipped in each time period during the
first scenario for a¼ 1.

Fig. 7. Total non-consumable supplies needed and shipped in each time period during
the first scenario for a¼ 1.
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transportation calculations, one person-day of consumable goods is
assumed to require 2 ft3 of space.

The transportation costs for moving material are assumed to be
$0.0015 per unit-mile for consumable goods and $0.0045 per unit-
mile for non-consumable goods. The ratio of the transportation
costs reflects the different assumptions of space requirements for
a unit of consumables (one person-day’s material) and a unit of
non-consumables (one person’s material). Distances for all origin-
edestination combinations reflect highway distances determined
between Zip codes on the North Carolina network.

Origins and destinations that are less than 50 miles apart are
assumed to allow transportation within the same time period. If
locations are between 50 and 100 miles apart, it is assumed that
there is a one-period transportation lag, and for locations that are
more than 100 miles apart, the lag is assumed to be two periods. In
this case study, the maximum distance between a potential storage
facility and a shelter location is 310 miles.

Three possible sizes of facilities are considered, with parameters
as shown in Table 3. A facility of any size can be opened at any of the
16 candidate locations. As a first experiment, we assume that the
pre-positioning of supplies must satisfy the demands generated in
all the scenarios (i.e., a¼ 1). In order to meet the demand
requirements in 100% of the cases, three facilities are opened (two
large and one small), located in Sanford, Smithfield and Nashville.
The location indices are listed in Table 4, from which the selected
locations can be identified on the map in Fig. 4. A total of 219,639
units of consumable and 62,292 units of non-consumable supplies
are stored. The facility and material acquisition cost (i.e., first-stage
cost) for this solution is $5.17 million. The expected second-stage
Table 4
Solution for a¼ 1.0.

Index Facility
locations

Facility
capacity

Consumable
supplies (units)

Non-consumable
supplies (units)

Stored
volume (ft3)

1 Sanford Large 108,682 30,439 399,998
3 Smithfield Large 102,557 29,653 383,032
6 Nashville Small 8,400 2,200 30,000

Total 219,639 62,292
cost (transportation and holding costs) is $1.03 million. There is
no penalty cost for unmet demand in this case, because a¼ 1.
Although some storage of material is allowed at the shelter loca-
tions (Ei values were set to 3000 ft3 for the 25 largest shelters), none
of this capacity is used in the optimal solution.

Figs. 6 and 7 show the quantities of consumables and non-
consumables moved out of the distribution centers to the shel-
ters over time for the first scenario in Table 2, which has the largest
demands. Even in this scenario, the capacity of the distribution
centers to move material to the shelters (as specified in Table 3)
exceeds the demand rate, so the loading/transportation elements
of this particular problem are not binding constraints on the
solution.

If the reliability requirement is relaxed from 100% to 95%, the
optimal solution is as summarized in Table 5. The number and
locations of distribution centers are the same as when a¼ 1.0, but
the overall capacity is reduced by approximately 36%. The total
first-stage costs decrease to $3.18 million. The expected second-
stage costs are $1.37 million. The expected holding costs decrease
by about $470,000 because less material is acquired in total, but
Table 5
Solution for a¼ 0.95 and pk¼ 20 times purchase price.

Index Facility
Locations

Facility
capacity

Consumable
supplies (units)

Non-consumable
supplies (units)

Stored
volume (ft3)

1 Sanford Large 95,115 29,876 369,488
3 Smithfield Small 15,000 0 30,000
6 Nashville Medium 22,356 9,215 100,000

Total 132,471 39,091



Table 6
Solution for a¼ 0.95 and pk¼ 10 times purchase price.

Index Facility
locations

Facility
capacity

Consumable
supplies (units)

Non-consumable
supplies (units)

Stored
volume (ft3)

1 Sanford Large 105,110 30,023 400,000
6 Nashville Medium 27,361 7,546 100,000

Total 132,471 37,569

Table 7
Solution for a¼ 0.95 and pk¼ 50 times purchase price.

Index Facility
locations

Facility
capacity

Consumable
supplies

Non-consumables
supplies

Volume

1 Sanford Large 89,077 36,974 399,998
3 Smithfield Medium 21,626 9,458 100,000
6 Nashville Medium 20,144 9,952 100,000
11 Dunn Small 6,986 2,671 29,998

Total 137,833 59,055

Table 9
Solution for a¼ 0.9 and pk¼ 10 times purchase price.

Index Facility
locations

Facility
capacity

Consumable
supplies (units)

Non-consumable
supplies (units)

Stored
volume (ft3)

6 Nashville Small 15,000 0 30,000
11 Dunn Large 85,430 37,569 400,000

Total 100,430 37,569

Table 10
Solution for a¼ 0.85 and pk¼ 10 times purchase price.

Index Facility
locations

Facility
capacity

Consumable
supplies (units)

Non-consumable
supplies (units)

Stored
volume (ft3)

6 Nashville Small 15,000 0 30,000
11 Dunn Large 78,877 37,569 383,168

Total 93,877 37,569
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there are expected unmet demand penalties for the scenarios in the
5% of cases where demand is not fully met. Evaluation of these
penalty costs depends on the coefficients pk, and for this experi-
ment we have set the penalty for each unit of unmet demand at 20
times the purchase price of the commodity. The total expected
unmet demand penalty is approximately $802,000, associated with
consumables in scenarios 1e3 and non-consumables in scenarios 1
and 2.

To test the sensitivity of the solution to the specification of the
unmet demand penalty, we have also solved the a¼ 0.95 problem
with a lower penalty cost (10 times the purchase price of the
commodities) and a higher penalty (50 times the purchase price).
These solutions are summarized in Tables 6 and 7. When the
penalty cost is reduced (as shown in Table 6), the solution has only
two distribution centers and the total amount of non-consumable
supplies stored is reduced. When the penalty cost is increased (as
shown in Table 7), the optimal solution includes four facilities and
the amount of consumable supplies stored is sufficient to meet
demand in all but the two most severe scenarios (with total
probability of occurrence 0.0228, as shown in Table 2). The amount
of non-consumablematerial stored is sufficient for all but the worst
case scenario (with probability 0.0127). In this case, the reliability
constraint is no longer binding because the penalty cost of not
meeting demand is high enough that the minimization of expected
costs produces a solution that meets all demand in more than 95%
of the possible outcomes.

Tables 5e7 illustrate an important basic property of the problem
structure. The reliability constraint puts a “floor” under the amount
of material stored, so that all demand can be met in the required
proportion of outcomes, but if the penalty cost of not meeting
demand is high enough, the optimal solution for stocking material
may be above this level.

To investigate this further, a solution with a¼ 0.9 and pk¼ 20
times the material purchase price is shown in Table 8. This solution
has sufficient capacity to meet all demands in at least 92.4% of the
Table 8
Solution for a¼ 0.9 and pk¼ 20 times purchase price.

Index Facility
locations

Facility
capacity

Consumable
supplies (units)

Non-consumable
supplies (units)

Stored
volume (ft3)

6 Nashville Small 15,000 0 30,000
11 Dunn Large 70,715 39,091 375,976
12 Laurinburg Small 15,000 0 30,000

Total 100,715 39,091
outcomes in Table 2, so the reliability constraint has been exceeded.
Further reductions of the required reliability level with pk¼ 20
times the material purchase price will have no effect on the solu-
tion because the cost tradeoff is driving the optimal solution.

At the lower level of penalty for unmet demand (pk¼ 10 times
material purchase price), the reliability constraint is active at lower
levels because there is less incentive to purchase and store more
material to avoid unmet demand. Tables 9 and 10 summarize the
solutions for a¼ 0.9 and a¼ 0.85. The two solutions are very
similar, but as the reliability constraint is relaxed, slightly less
consumable material is stored. At a¼ 0.85, the reliability constraint
is not binding, so further reductions have no effect on the solution.

Although the solutions described above are based on mini-
mizing total expected costs over all scenarios, in practice there may
be special attention put on the first-stage costs of facility creation
and stocking, because these are very visible costs of preparation for
a disaster that may or may not occur. The numbers of facilities, total
capacity and first-stage costs of the solutions summarized in
Tables 5e10 are listed in Table 11. The range in capacity and first-
stage costs of the solutions is approximately a factor of two, but
solutions with relatively high reliability (a¼ 0.95) are available at
about 25% higher cost than the minimum solution.

Another interesting comparison is to contrast the solutions
found with the dynamic allocation model (P1) to the simpler,
static version of the model in Rawls and Turnquist [15]. We will
focus on the solutions generated using an unmet demand penalty
value of 20 times the supply purchase price. For the static model,
we have assumed the same level of total demand at each shelter
location as in the dynamic model, but there is no requirement
about when supplies need to be delivered. The static model in [15]
also contains no reliability requirement on the solution. The
solution given by the static resource allocation formulation is
summarized in Table 12. Although the static model in [15] does
not include a reliability constraint, it is possible to compute that
Table 11
Cost and capacity summary.

Reliability
level (a)

pk (multiple of
material price)

Number of
Facilities

Total
capacity (ft3)

First-stage
costs (millions)

1.0 e 3 830,000 $5.17
0.95 50 4 630,000 $3.80
0.95 20 3 530,000 $3.18
0.95 10 2 500,000 $3.12
0.9 20 3 460,000 $2.68
0.9 10 2 430,000 $2.62
0.85 10 2 430,000 $2.52



Table 12
Static model solution for pk¼ 20 times purchase price.

Index Facility
locations

Facility
capacity

Consumable
supplies (units)

Non-consumable
supplies (units)

Stored
volume (ft3)

1 Sanford Large 101,753 28,831 376,492
6 Nashville Medium 26,973 7,676 100,000

Total 128,726 36,507
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the solution contains sufficient material to meet all demands with
probability 0.94. Thus, the most direct comparisons are with the
dynamic solutions for a¼ 0.9 and a¼ 0.95, as summarized in
Tables 5 and 8.

The dynamic model solutions both specify three storage loca-
tions, rather than two. The dynamic solution for a¼ 0.95 uses the
same two locations as in the static solution, but adds a third (small)
facility at Smithfield (location index 3). The total amount of material
stored (both consumable andnon-consumable) is a little larger in the
dynamic solution. The dynamic solution for a¼ 0.9 uses one of the
two locations in the static solution (Nashville), but at a different size,
and specifies two other locations for the other two facilities. That
dynamic solution stores somewhat less consumable material and
a little more non-consumables than called for in the static solution.

Addition of the reliability requirement (constraints 10 and 11 in
problem P1) provides an important element in directing the solu-
tion. The static solution constructed without that requirement
would not meet the a¼ 0.95 reliability level. It would meet
a requirement of a¼ 0.9, but with a different selection of storage
locations and material allocation than used in the optimal dynamic
solution for a¼ 0.9.

The addition of the dynamic demand requirements changes
both the storage locations chosen and the material allocation,
relative to the static solution. These changes are important to
ensure that sufficient material can be supplied to the shelters
quickly, and increase the quality of the service provided.

Computation of the solutions described here has been done
with the CPLEX Cþþ library on a Linux X86-64 workstation with
dual quad-core processors, a clock speed of 1.86 GHz and 8 GB of
memory. CPLEX uses all eight cores in parallel during the solution
process. The solution times range from about 10 min to more than
47 h, depending on the values of a and pk. The shortest solution
time (by far) is for the case where a¼ 1.0 because there are no
decisions to be made about excluding scenarios from the reliability
set and there are no unmet demands to be evaluated. Most of the
solutions required 6e11 h of computation time.

4. Conclusions and further directions

This paper presents a dynamic allocation model that optimizes
pre-event planning for meeting short-term demands (over
approximately the first 72 h) for emergency supplies at shelter
locations due to hurricane threats. The model includes uncertainty
about what demandswill have to bemet andwhere those demands
will occur. The model also includes requirements for reliability in
the solutions ensuring that all demands are met in scenarios
comprising at least 100a% of all outcomes. A case study using
shelter locations in North Carolina and a set of hurricane threat
scenarios is used to illustrate application of the model and how it
supports an emergency relief strategy.

The model presented is a two-stage stochastic program that
offers a basis for planning for the arrivals of evacuees at shelter
locations. For consumablematerials, themodel follows the policy of
placing enough material at the shelter location within the first 12 h
of a hurricane threat to handle anticipated needs over the first
48 hours; and by the end of each day there should be enough
material on hand to handle the next two days of operations without
disrupting service while emergency conditions prevail. For non-
consumable materials, the plan requests that all supplies arrive
within the first 24 h of emergency.

A series of experiments was conducted to determine the influ-
ence of the reliability parameter (a) on the solutions and the
interactions between a and the penalty cost of unmet demand (pk).
The reliability requirement places a “floor” under the required
material stocked, but when the penalty for unmet demand is high
enough, the reliability constraint no longer affects the solution. This
interaction is an important part of evaluating potential solutions.

The long computational times for solutions with a< 1.0 suggest
the value of developing a specialized algorithm to solve this
dynamic resource allocation problem. Several possible approaches
to this problem are currently being considered.
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