
IE 477 - Introduction to ILOG CPLEX
Optimization Studio

Serkan Turhan

December 5, 2019

This documentation is for the usage of ILOG CPLEX Optimization Studio (cited as OPL
for short throughout this document: Optimization Programming Language, note that there
are other IBM products that utilizes OPL in different programming environments such as
Python, Java, C++, etc.) It describes the steps to install it, necessary packages to download
in order to be able to run it and a general overview of its programming language. You can
access the files to generate this pdf from this link.

1

https://en.wikipedia.org/wiki/Optimization_Programming_Language
https://courses.ie.bilkent.edu.tr/ie477/wp-content/uploads/sites/2/2019/12/cplex_TeX_files.zip
HP
Metin Kutusu
Suggestion: while CPLEX is a good solver to analyze a problem and for trying different branch-and-bound techniques, I didn't have the chance to work with Gurobi back then, while preparing this documentation. If you are working with Python in your project, you will have easier time setting it up (specifically in the data handling and warm-start parts), it can also solve non-linear models, unlike CPLEX. More importantly, it is heavily documented and has active support forums, you can register an academic license with your bilkent email.

-Serkan

Contents

1 Why CPLEX and OPL? 3

2 Installing the ILOG CPLEX Optimization Studio 4
2.1 Windows issues while installing . 9

3 Using ILOG CPLEX Optimization Studio 10
3.1 Creating a project . 10
3.2 Turkish version issue . 11
3.3 File types . 12
3.4 .dat files . 13

3.4.1 Writing parameters . 13
3.5 .mod files . 13

3.5.1 Defining parameters in the model 13
3.5.2 Defining decision variables . 14

3.5.2.1 Defining a decision variable expression 15
3.5.3 Defining the objective function 15
3.5.4 Defining the constraints . 15

3.5.4.1 Equalities and inequalities 16
3.5.4.2 Summation . 16
3.5.4.3 Constraint over a set 16
3.5.4.4 “constraint 1 or constraint 2” type of constraint 16

3.5.5 Readable format . 19
3.6 .ops files . 21
3.7 Configuration files . 23

4 Checking the type of your problem 23

5 Final words 23

2

1 Why CPLEX and OPL?
CPLEX has many benefits, one of those is that it is able to solve mathematical models
really fast (depending on the type of problem) and easier to deploy/use compared to its
alternatives: OpenSolver, GLPK, Xpress, etc. The main reason behind it is the heuristics
and techniques that it utilizes before solving the model (pre-process) and while solving
the problem (branch and bound operations). But these capabilities comes with a great
price tag, so your company probably does not have the license for it, which means that
you can use it only for the performance analysis of your heuristics, not for developing a
solution for the company. GAMS uses CPLEX too, but licensing it requires more work
than the OPL. Utilizing CPLEX while solving your mathematical models can save you
great time, especially for NP-hard problems.

Figure 1: the objective value (minimize) vs. time (seconds) graph

3

Figure 2: the objective value (minimize) vs. time (seconds) graph

In the figures 1 and 2, you can see the performance of GLPK on a vehicle routing problem,
with two different problem sizes. Note that CPLEX solved these problems in less than
30 seconds! To give some depth on the problem, it was consisting around 20 general
constraints and 7 decision variables (5 of which were binary) in three dimensions. If you
have many data points, for which to run a mathematical model on, especially for integer
programming problems, CPLEX can give you a result in a matter of seconds, while its
alternatives give in a couple hours or may not give at all. By the way, you can utilize
open-source solvers like this one in your project but as you can see, they are really slow
at finding / improving the solutions than heuristical methods. So you need to apply some
computational optimization and concurrency (the worst disadvantage of GLPK is utilizing
only one core while solving, whereas OPL utilizes all of them) to be able to benefit from
them.

2 Installing the ILOG CPLEX Optimization Studio
Having a Bilkent University associated e-mail is enough to register for an academic li-
cense of ILOG CPLEX. Note that if you download the installer on a computer and try to
install it on a different computer, you will, most probably, get errors while running the
program on that computer, at least this was always the case in our project. To download,
go to this webpage.

4

https://www.ibm.com/products/ilog-cplex-optimization-studio

Figure 3: Click ”Get student and faculty editions for free”

Figure 4: Click ”Register Now”, if it didn’t direct you there after 3

5

Figure 5: Enter your bilkent issued e-mail address

Figure 6: Fill out the registration form

6

Figure 7: Finish the registration by entering your credentials and a password

Figure 8: Enter the code that’s been sent to your registered e-mail

On the next page, you are automatically logged in to your created account, scroll down to
see the products available to download for you. Note that if your project includes machine
learning or some other stuff, you can utilize other tools of IBM as well.

7

Figure 9: Choose the version of the program to download

Figure 10: Select HTTP to avoid dealing with setting up the Download Director

8

Figure 11: Choose the installer according to your OS, OSX (for macs) is listed at the
bottom

Figure 12: Agree with the terms and click the Download Now button

After the download is finished, install it and you are done! (I could not provide screenshots
for that since I deleted the installer long time ago and because I’m currently using mobile
AP to connect to the internet, I don’t want to exceed my quota by downloading it again

)

2.1 Windows issues while installing
It might result in an error or a warning before the installation in windows, prompting you
to install a library before you can proceed. I can’t quite remember because I already in-
stalled it, but I still have the installer of required library. Go to this webpage and download

9

https://www.microsoft.com/en-us/download/details.aspx?id=53344

it, if the webpage is not available, search for the Microsoft .NET Framework 4.6.2 and
install it from the official Microsoft website.

3 Using ILOG CPLEX Optimization Studio
The sections below describes how to create a simple 0-1 knapsack problem in OPL, you
can follow the steps and replace the knapsack model and data with your mathematical
model to solve it easily.

3.1 Creating a project
Go ahead and launch the program, you can find the launcher by searching for oplide in
the windows search bar (or the mac equivalent). In the launcher, follow the steps below:

Figure 13: Navigate to create a new OPL Project

10

Figure 14: Name your project and make sure that all checkboxes are checked

Figure 15: You should see something like this after creating it

As you can see, there four types of files.

3.2 Turkish version issue
This problem is specific to the Turkish version of the program. Since it creates the folders
in Turkish, as seen from the figure 15, this creates an issue when you try to run the model,

11

because the program does not recognize the Turkish letters in the name under “Çalıştırma
Yapılandırışları”. So what you need to do is as follows:

Figure 16: Choose the rename option

Figure 17: Choose a name that doesn’t contain any non-english words

3.3 File types
In this section an overview of the files utilized in OPL are described. Note that this
documentation does not cover in much detail, it is enough to write mathematical models
but for extensive applications or for more detailed information, you should consult the
official documentation provided by IBM, accessible here.

• .mod: Model codes, constraints, decision variables

• .dat: Data files, includes parameters

• .ops: Customizing the solver engine, e.g. defining stop conditions

• Configuration: To configure run configurations, i.e. which combination of .mod /
.dat / .ops files.

12

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.odms.ide.help/OPL_Studio/maps/groupings/opl_Language.html

3.4 .dat files
These data files are cruicial for your mathematical model to run smoothly, you can define
the parameters explicitly in your model (which is described in section 3.5), but it is more
organized if you use these data files.

3.4.1 Writing parameters

The examples for parameter declarations are in Code 1.
//scalar parameters
s = 5;
d = 10.42;
//vector parameters
vect = [3, 2, 5, 1, 3];
otherVect = [35.2, 13.63, 92.42];
//3x2 matrix
matrix = [[1, 3], [2, 3], [194, 23]];
//3x2x2 matrix
matrix3d = [[[22, 32], [3, 2]], [[...], ...], [[...], ...]] //not

completely sure, never tried it
//or even strings
stringArr = [‘‘New York’’, ‘‘Ankara’’];
singleString = ‘‘IE477’’;

Code 1: Defining various types of parameters

For our example, the Knapsack problem, go ahead and paste the Code 2 into your .dat
file.
sackCapacity = 20;
itemCount = 10;
itemValues = [5.4, 3.2, 6.8, 1.0, 40.54, 5.6, 3.2, 8.9, 11, 9.5];
itemSizes = [5, 2, 1, 0.01, 13, 5, 6.7, 1, 2, 3];

Code 2: OPL code to create decision variables

3.5 .mod files
In this section, the steps to create a .mod file is explained.

3.5.1 Defining parameters in the model

The codes in these files are executed, so you write your models here. First, you should
define your sets, the said sets here basically contain only the indecies. The range object
corresponds to a set in OPL, you can see the declaration in Code 3.
range items = 1..itemCount;

Code 3: OPL code to create a range

13

Then you set the parameters as in Code 4, or you can load them from the .dat files as in
Code 5.
int sackCapacity = 20;
int itemCount = 10;
range items = 1..itemCount;
float itemValues[items] = [5.4, 3.2, 6.8, 1.0, 40.54, 5.6, 3.2, 8.9,

11, 9.5];
float itemSizes[items] = [5, 2, 1, 0.01, 13, 5, 6.7, 1, 2, 3];

Code 4: OPL code to defining parameters without .dat file

int sackCapacity = ...;
int itemCount = ...;
range items = 1..itemCount;
float itemValues[items] = ...;
float itemSizes[items] = ...;

Code 5: OPL code to load parameters from .dat file

The main requirement here is that the variable names in .mod file and the .dat file should
match. Putting three dots makes engine to search for the correponding variable name in
the .dat file and will result in an error if it cannot find it. Another point here is that, for the
arrays, the sizes should match, otherwise it will result in an error as well. You should use
a range variable inside the square brackets “[” “]”, and you can define multidimensional
arrays as in Code 6.
int array2d[set1][set2] = ...;
float array3d[set1][set2][set3] = ...;
boolean array4d[set1][set2][set3][set4] = ...;

Code 6: Code to declare multidimensional arrays

3.5.2 Defining decision variables

You can define the decision variables as in the Code 7.
dvar float someNumericalDecVar;
dvar int someIntegerDecVar;
dvar boolean someBinaryDecVar;
dvar boolean some2dBinaryDecVar[set1][set2];

Code 7: OPL code to create decision variables

For the sake of our example, copy the Code 8 to your model file.
dvar boolean x[items];
dvar float sackValue;

Code 8: Code to create decision variables for Knapsack problem

14

3.5.2.1 Defining a decision variable expression You can utilize the decision variable
expression for a more compact code. It basically means declaring a new decision variable
and equating it to a some function of some decision variables, which you can later use
this variable to reference this function. It can be used as in Code 9.
dexpr float fixedCost = reorderingCost + 2*travelCost;

Code 9: Code to create decision variables for Knapsack problem

Which is equivalent to the Code 10.
dvar float fixedCost;
//some other model codes
//...
//in the constraints part of the code
fixedCost == reorderingCost + 2*travelCost;

Code 10: Code to create decision variables for Knapsack problem

Using dexpr reduces the number of lines in your constraints section and makes it easier to
make modifications on the code later on.

3.5.3 Defining the objective function

Defining an objective function is as easy as the other languages, for the examples, take a
look at the Code 11. Partitioning your objective function by using dexpr will reduce the
length of your objective function and make it more clear.
minimize fixedCost + reOrderCost; //minimization
maximize profits - fixedCost - reOrderCost; //maximization

Code 11: Defining objective functions

The constraints will be after those. For our example, go ahead and paste Code 12 into
your code.
maximize sackValue;
subject to{

}

Code 12: Defining objective function for our example

3.5.4 Defining the constraints

The constraints for the mathematical model will be written inside the subject to chunk.
Let’s start from the most basic operations for writing a constraint.

15

3.5.4.1 Equalities and inequalities Like the other languages, in OPL, for equalities
and inequalities you do as in the Code 13. Just be careful about continuous (float) decision
variables in strict inequalities, OPL doesn’t like it when you use strict inequality for a
continuous decision variable, so try to avoid it!
someEquation < someOtherEquation //strictly less than
someEquation <= someOtherEquation //less than or equal to
someEquation == someOtherEquation //equal to
someEquation >= someOtherEquation //greater than or equal to
someEquation < someOtherEquation //strictly greater than
someEquation != someOtherEquation //not equal to (note that this is

also a strict inequality)

Code 13: Equality and inequality operators

3.5.4.2 Summation The examples of summation, including the conditional summa-
tion, is shown in Code 14.
sum(i in set1)x[i] >= someEquation; // summation
sum(i in set1, j in set2)x[i][j] >= someEquation; //2d summation
sum(i in set1)(sum(j in set2)x[i][j]) >= someEquation; //alternative 2d

summation
sum(i in set1, j in set2 : i != j) x[i][j] >= someEquation; //

conditional

Code 14: Summation operator examples

3.5.4.3 Constraint over a set You can define constraint(s) over set(s) as in Code 15

forall(i in set1) {
x[i] >= someEquation;
y[i] >= someEquation;

}// one set

forall(i in set1, j in set2){
x[i][j] >= someEquation;
y[i][j] != x[i][j];

}// two sets

forall(i in set1, j in set2 : i != j) {
x[i][j] == y[i][j];

}// conditional constraint

Code 15: Defining constraints

3.5.4.4 “constraint 1 or constraint 2” type of constraint If you are facing a model
where either constraint 1 or constraint 2 has to be satisfied, but not necessarily both at
the same time. And you cannot do it by defining slack variables etc. You can do the
following:

16

(x[i][j] >= someEquation) || (x[i][j] >= someOtherEquation);

Code 16: Either one of the constraints

Note that you should use this operator as a last resort, as your academic advisor(s), prob-
ably, won’t approve this.

I believe these operators are sufficient for writing mathematical models in your project.
If you need a more complex operation you should consult the documents using this link.
Moreover, there are many example opl projects that you can make use of, although most
of them are written in a little complicated way, you may find useful stuff in them. You
can access the example projects by choosing the “examples” from the menu in figure 13.

Let’s get back to our example project, now paste the constraints in Code 17 into the subject
to chunk.
subject to {

sum(i in items)x[i]*itemSizes[i] <= sackCapacity;
sackValue == sum(i in items)x[i]*itemValues[i];

}

Code 17: Defining objective functions

Finally our model is ready to run, follow these steps to run our example project:

Figure 18: Click the run button located here

17

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.odms.ide.help/OPL_Studio/maps/globals/opl_homepage.html

Figure 19: Accept and run, then you’ll wait for program to initialize model and begin
solving

Figure 20: Check the box at the bottom of the page to see if there’s any error. Warnings
are okay though

Figure 21: You’ll notice which files produced the error. Configuration has an error sign
as well because one of the files it contains produced an error

18

Figure 22: After the solver is finished, you can notice the optimal objective and the opti-
mal solution in this screen

3.5.5 Readable format

Unless you want to inspect each decision variable, after each time model is run, from
the screen at figure 22, you should transform the solution into somewhat readable for-
mat. This can be accomplished by the usage of loops and the functions writeln()
and write() inside the display chunk. For instance, for a TSP, if you have a two-
dimensional decision variable, say xij , indicating whether the arc between nodes i and j
is used, you can add / use the Code 18 to output the route in the following form:

Vehicle follows the route: 0 -> 2 -> 5 -> 3 -> 4 -> 1 -> 0

execute DISPLAY{
write(‘‘Vehicle follows the route: ’’)
var currentNode = startingNode;
for(i in nodeCount){
if(x[currentNode][i] == 1) {

write(i);
currentNode = i;
break;

}
}
while(currentNode != startingNode) {
for(i in nodeCount) {

if(x[currentNode][i] == 1) {
write(‘‘ -> ’’, i);
i = currentNode;
break;

}
}

}
write(‘‘ -> ’’, currentNode);

19

}

Code 18: OPL code to output route

For our example, go ahead and paste the Code 19 after the subject to chunk.
execute DISPLAY{

write(‘‘Items picked at the optimal solution:’’)
for(i in items) {
if(x[i] == 1) {

write(‘‘ ’’, i);
}

}
write(‘‘.’’);

}

Code 19: Code to display Knapsack problem solution

Now navigate to the section shown in figure 23, then re-run the model.

Figure 23: The outputs can be seen from this section

Figure 24: The output should look like this

The complete .mod file for the Knapsack example is in Code 20.
int sackCapacity = ...;
int itemCount = ...;

20

range items = 1..itemCount;
float itemValues[items] = ...;
float itemSizes[items] = ...;

dvar boolean x[items];
dvar float sackValue;

maximize sackValue;
subject to {

sum(i in items)x[i]*itemSizes[i] <= sackCapacity;
sackValue == sum(i in items)x[i]*itemValues[i];

}

execute DISPLAY{
write("Items picked at the optimal solution:");
for(i in items) {
if(x[i] == 1) {

write(" ", i);
}

}
write(".");

}

Code 20: Complete code for the Knapsack example

3.6 .ops files
In these file types, you can adjust many aspects of the solver engine. If your problem
is NP-hard, the most important feature among those is the execution time limit, you can
adjust it as in the figure 25.

21

Figure 25: The time limit is set from this box

Figure 26: Run obtained with a time limit

22

In my computer, the model would be solved within 20 milliseconds, and as you can see
from the figure 26, setting a time limit of 2 milliseconds returns no solution. You can
change other parameters of the solver engine but, unless you know what you are doing, it
is best to leave them be.

3.7 Configuration files
These files hold the run configurations. They are useful if you have various different data
with different, alternating models to run.

4 Checking the type of your problem
After your model is solved, from the “solutions” tab shown in figure 27, you can check
which type of programming was used by the solver. Which indicates the type of your
problem. The figure 27 shows the output for 0-1 knapsack model, Mixed Integer Linear
Program was used. To check, you can add two binary (boolean) decision variables and
simply multiply them at the objective, you’ll see that MIQP (Mixed Integer Quadratic
Programming) is used to solve it. This is especially useful if you are not sure about the
linearity of your model.

Figure 27: Checking which program was used to solve model

5 Final words
For the most of the projects, the data will be provided in an excel file by the company.
Transforming the information given into proper parameters for the OPL model might
become an issue itself. For things to move smoothly, I would recommend that you utilize
VBA to create your .dat file, then simply copy-pasting the output from VBA directly
into the .dat file will save you great time, or even better, writing into the .dat file from

23

VBA. Of course this only applies if you have many parameter configurations to run the
mathematical model on.

Good luck in your projects!

24

	Why CPLEX and OPL?
	Installing the ILOG CPLEX Optimization Studio
	Windows issues while installing

	Using ILOG CPLEX Optimization Studio
	Creating a project
	Turkish version issue
	File types
	.dat files
	Writing parameters

	.mod files
	Defining parameters in the model
	Defining decision variables
	Defining a decision variable expression

	Defining the objective function
	Defining the constraints
	Equalities and inequalities
	Summation
	Constraint over a set
	``constraint 1 or constraint 2'' type of constraint

	Readable format

	.ops files
	Configuration files

	Checking the type of your problem
	Final words

