The Demand- Selective Location Routing Problem: the School Districting Application

Nazlı Esen¹, Başak Yazar¹, Bahar Yetiş Kara¹, İmdat Kara²

¹Department of Industrial Engineering, Bilkent University ²Department of Industrial Engineering, Başkent University

Eight years primary education is obligatory

In some districts, there aren't any primary school

School Districting Program

Students in these districts are transported to districts with primary schools

Central Schools

1989-90 \rightarrow 5 Central Schools and 305 students.

 $2009-10 \rightarrow 80$ cities with 667,475 students

Now \rightarrow 5,754 central schools serving students from 39,559 districts in Turkey

Mathematical models are developed

Heuristic approaches for minimizing the cost of school districting application

Real Life Scenarios

Location Routing Problem

the selection of central school location

assignment of demand sites to central school

transportation routes between demand nodes Demand Selective Location Routing Problem

the students at a demand site may walk directly to central school or to other demand sites to be picked up.

School Districting | Walk to School

School Districting | Walk to Route or School

Literature Survey

Location Routing Problem

- Daskin, M.S., 1995. Network and Discrete Location: Models, Algorithms and Applications, New York: John Wiley and Sons, Inc., pp. 339-349.
- Nagy, G., Salhi, S., 2007. Location-routing: Issues, models and methods. European Journal of Operational Research 177, 649-672.
- Ghiani, G., Laporte, G., 2001. Location-arc routing problems. OPSEARCH 38, 151-159.
- Lin, C.K.Y., Chow, C.K., Chen, A., 2002. A location-routing-loading problem for billing services. Computers & Industrial Engineering 43, 5-25.
- Karp, R., 1972. Reducible among combinatorial problems. In: Miller, R.E., Thatcher, J. (Eds.), Complexity of Computer Computations. Plenum Press, New York, pp. 85-104.

School Bus Routing Problem

- Bodin, L.D., 1990. Twenty years of routing and scheduling. Operations Research 38 (4), 571-579.
- Swersey, A.J., Ballard, W., 1984. Scheduling school buses. Management Science 30 (7), 844-853.
- Kara, I., Kara, B.Y., Yetiş, M.K., 2007. Cumulative Vehicle Routing Problems. In: Caric, T., Gold, H., Vehicle Routing Problem. Austria: Vienna, pp. 85-98.
- Park, J., Kim, B., 2010. The school bus routing problem: A review. European Journal of Operations

- Glover, F., 1989. Tabu Search, Part I, ORSA Journal on Computing, vol. 1, no. 3, 190-206.
- Glover, F., 1990. Tabu Search, Part II, ORSA Journal on Computing, vol. 2, no. 1, 4-32.
- Skorin-Kapov, J., 1990, Tabu search applied to the quadratic assignment problem, ORSA J. Comput. 2:33-35.
- Taillard, E. D., 1990, Some efficient heuristic methods for the flow shop sequencing problem, Eur. J. Open Res. 47:65-74.
- Taillard, E. D., 1991, Robust taboo search for the quadratic assignment problem. Parallel Comput. 17:443-455.
- Teitz, M.B., Bart, P., 1968. Heuristic methods for estimating the generalised vertex median of a weighted graph. Operations Research 16, 955-961.

Mathematical Model | Walk To School

$$s_i = \begin{cases} 1, & \text{if demand node } i \in D \text{ needs to be visited by a vehicle} \\ 0, & \text{otherwise} \end{cases}$$

 $x_j = \begin{cases} 1, & \text{if candidate location } j \in C \text{ is selected as a central school location} \\ 0, & \text{otherwise} \end{cases}$

 $z_{ijk} = \begin{cases} 1, & \text{if node i immediately precedes node j using bus of k^{th} central school; $i, j \in N, k \in C$} \\ 0, & \text{otherwise} \end{cases}$

 y_{ijk} : Number of students on a bus of k^{th} central school, exiting from node i right before node j; $i \in D; j, k \in C$

 SD_j : Set of all demand nodes that the distance to $j \in D$ is less than or equal to α km

 $SD_j = \{ i: I_{ij} \leq \alpha, i \in \mathbf{D} \}$

 SC_i : Set of all candidate central school nodes that the distance to node $i \in N$ less than or equal to α km, $SC_i = \{ j: I_{ij} \leq \alpha, j \in C \}$.

 $SR_i = \{ h:h \in D, l_{ih} \leq \gamma \}.$

Model

 $\mathrm{Min}\sum_{i\in N}\sum_{j\in N}\sum_{k\in C}c_{ij}z_{ijk}$

s.t.

一日日

$\sum_{k\in C}\sum_{j\in N} z_{ijk} = s_i$	$\forall i \in D$	(2)
$1-x_j \ge s_i$	$\forall i \in SD_j, \forall j \in C$	(3)
$1 - \sum_{j \in SC_i} (x_j) \le s_i$	$\forall i \in D$	(4)
$\sum_{i=\infty} x_j = p$		(5)
360		

(1)

Model

一日日日

$\sum_{i \in N} \sum_{k \in C} z_{jik} = \sum_{i \in N} \sum_{k \in C} z_{ijk}$	$\forall j \in D$	(6)
$\sum_{i\in D} z_{ijj} = \sum_{i\in D} z_{jij}$	$\forall j \in C$	(7)
$z_{ijk} \leq x_k$	$\forall i,j \in N, \forall k \in C$	(8)
$y_{ijk} \geq z_{ijk}$	$\forall i,j \in N, \forall k \in C$	(9)
$y_{ijj} = z_{jij}$	$\forall i \in D, \forall j \in C$	(10)
$\sum_{j \in N} y_{ijk} = \sum_{r \in N} y_{rik} + \sum_{j \in N} q_i z_{ijk}$	$\forall i \in D, \forall k \in C$	(11)
$y_{ijk} \leq QV z_{ijk}$	$\forall i,j \in N, \forall k \in C$	(12)
$\sum_{i \in D} y_{ikk} \le QS$	$\forall k \in C$	(13)
$x_j, s_i, z_{ijk} \in 0, 1; y_{ijk} \ge 0, integer$	$\forall i \in D, \forall j,k \in C$	(14)

EXTENSIONS

Model | Walk to Route or School

District must be visited if and only if there is no central school within α km, and no demand nodes which is visited by a node within γ km.

Min (1)

s.t.

$$1 - \sum_{j \in Candidate_i} (x_j) \leq s_i$$

$$1 - \sum_{j \in SC_h} x_j - \sum_{m \in N} \sum_{k \in J} \sum_{i \in SR_h} z_{mik} \leq s_h$$

∀i∈I

$$\forall h \in D \quad (4')$$

Model Extension Distance Constrained Walk to Route or School

•Students

- Central School
- + Another District
- + Travel Distance Constraint

Model Extension Distance Constrained Walk to Route or School

$$\begin{array}{ll} \text{Min} & (1) \\ \text{s.t.} \\ & (2), (3), (4'), (5) - (14) \\ & t_{ijk} \leq B \; z_{ijk} \\ & \sum_{j \in N} t_{ijk} = \sum_{r \in N} t_{rik} + \sum_{j \in N} l_{ij} \; z_{ijk} \\ & \forall i \in D, \forall k \in \mathbb{C} \quad (15) \\ & \forall i \in D, \forall k \in \mathbb{C} \quad (16) \\ & t_{ijk} \geq 0 \\ \end{array}$$

Model Extension Cumulative Walk to Route or School

•Students

- Central School
- + Another District
- + Travel Distance Constraint
- The objective is not related to buses, but to the number of students

Model Extension Cumulative Walk to Route or School

Model Extension Cumulative Walk to Route or School

$$\begin{array}{ll}
\operatorname{Min} & \sum_{i \in N} \sum_{j \in N} \sum_{k \in \mathcal{C}} c'_{ij} y_{ijk} & (1') \\
\text{s.t.} & (2), (3), (4'), (5) - (14) \\
& \sum_{i \in D} z_{jij} \leq R x_j & \forall j \in \mathbb{C} & (18) \\
& \sum_{i \in D} z_{ijj} \leq R x_j & \forall j \in \mathbb{C} & (19)
\end{array}$$

EWGLA 2015, Budapest, HUNGARY

Model Extension | D-Cum WTRS

•Students

- Central School
- + Another District
- + Travel Distance Constraint
- The objective is not related to buses, but to the number of students

Model Extension D-Cum WTRS

Solution Methodologies

Heuristics Incremental Greedy Sequential School Selection

- D: Set of distircts
- PS: Set of possible central schools
- PSC: Copy set of possible central schools
- Sⁿ: Set of Selected Central Schools
- $CS^{P} = \{all P-tuple of i \in PSC\}$
- Q^P : Set of cost for CS^P

- CS^P_r represents the rth P-tuple of CS^P
- QPr reprensents the rth element of QP
- $|CS^{P}| = R$
- A: Set of central schools in CS^Pr
- B: Set of central schools not in CS^Pr

Heuristics Nearest Neighbour Algorithm

W _i : Set of WTS	W1={}
WR _i : Set of WTRS	WR1={}
$\mathbf{R}_i:$ Set of districts which are assigned to be picked up by school bus	R ₁ ={}
F _i : Set of final routes	F1={}
\mathbf{I}_{ij} : Set of distances between ith school and jth district	w = 0
$K_{mj}\!\!:$ Set of distances between ith district and jth district	
w: tabu search decision variable	

Heuristics | Route Based Costing School Selection

EWGLA 2015, Budapest, HUNGARY

Data Sets & Computational Analysis

EWGLA 2015, Budapest, HUNGARY

Data | Ankara - Akyurt

Results

D- WTS α=4 , γ=2, p=2, B=2

Results

Cum WTRS α=4 , γ =2, R =50

Results

D-Cum WTRS α =4 , γ =2, B=2, R =50

EWGLA 2015, Budapest, HUNGARY

Computational Results | Ankara - Akyurt

	Parameters			Result			
Instance #	α	γ	р	z	v	Central School Node Number	S
Instance 16	2	2	1	3312468	1 route	14	-
Instance 17	4	2	1	3260079	1 route	15	11
Instance 18	4	4	1	2836818	1 route	14	1,2,5,10
Instance 19	6	2	1	3260079	1 route	15	11
Instance 20	6	4	1	2836818	1 route	14	1,2,5,10
Instance 21	6	6	1	2607417	1 route	15	1,2,5,6,8,11
Instance 22	2	2	2	3001599	3 routes	14,15	-
Instance 23	4	2	2	2775429	2 routes	14,15	11
Instance 24	4	4	2	2458791	2 routes	14,15	2,5,10,11
Instance 25	6	2	2	2775429	2 routes	14,15	11
Instance 26	6	4	2	2458791	2 routes	14,15	2,5,10,11
Instance 27	6	6	2	2378016	2 routes	15,16	1,2,5,6,8,11
Instance 28	2	2	3	3001599	3 routes	14,15,16	-
Instance 29	4	2	3	2775429	2 routes	14,15,16	11
Instance 30	4	4	3	2458791	2 routes	14,15,17	2,5,10,11
Instance 31	6	2	3	2775429	2 routes	13,14,15	11
Instance 32	6	4	3	2420019	2 routes	14,15,16	1,2,5,8,10,11
Instance 33	6	6	3	2210004	3 routes	14,15,16	1,2,5,6,8,11

Computational Results | Ankara – Akyurt

WTS

		Assignment	
		based	Route based
		Costing	Costing
Р	α	Heuristics %	Heuristics %
1	1	10,86965161	2,431906615
1	2	10,86965161	2,431906615
1	4	12,95738539	4,360753221
2	1	22,2681644	10,61104431
2	2	22,2681644	10,61104431
2	4	32,23180993	10,66036998

AVERAGE 18,57747122 6,851170843

WTRS

				Route
			Assignment	based
			based	Costing
			Costing	Heuristics
Ρ	α	γ	Heuristics %	%
1	2	2	16,52942761	2,7102149
2	2	2	22,2681644	10,611044
3	2	2	17,9371395	8,9547938
1	4	2	18,40203872	4,3607532
2	4	2	32,23180993	10,66037
3	4	2	27,54784936	8,1490105
1	4	4	31,13283968	9,7949886
2	4	4	48,44693998	12,746468
3	4	4	28,51844667	8,0157687
1	6	2	18,40203872	7,333902
2	6	2	32,23180993	6,6357669
3	6	2	27,54784936	10,82647
1	6	4	31,13283968	8,5420355
2	6	4	48,44693998	13,271929
3	6	4	30,5774872	9,7462458
1	6	6	42,66992967	4,9567445
2	6	6	35,82751336	2,9892145
3	6	6	23,98167605	11.988485

AVERAGE 29,65737443 8,4607892

Data | İstanbul- Kartal

Computational Results | İstanbul – Kartal

			Assig	nment	Based Costing	Route Based Costing		
P	α	Ŷ	Objective	Central School Node Number	S	Objective	Central School Node Number	S
2	2	2	14,1	40,26	1,4,5,7,9,10,12,13,14,15 ,16,18,20,21,22,24	10,1	42,26	1,4,5,6,7,8,9,10,12,13,14, 15,16,18,20,21,22,23,24
3	2	2	13,81	40,26,44	1,2,4,5,7,8,9,10,12,14,1 5,16,21,22,23,25	8,88	26,42,30	1,2,4,5,6,7,8,8,10,12,13,1 4,15,16,18,20,21,22,23,25
2	2	-	18,73	40,26	1,4,5,6,8,9,10,14,15,16, 18,20,21, 22,24,23	13,97	30,26	1,4,5,6,8,9,10,12,13,14,15 ,16,18,20,21, 22,24,23
					1,2,4,5,6,12, 13,14,15,16,18,20,21,22,			1,2,4,5,6,7,9,10,12, 13,14,15,16,18,20,21,22,2
3	2	-	15,17	40,26,44	23,25	11,21	32,26,42	3,25

School Districting Application

Demand-selective LRP

Cumulative and Distance-constrained versions

Two real life scenarios, Akyurt-Ankara and Kartal-İstanbul

Mathematical Models and Two different heuristics approaches

Thank You for Listening Questions & Answers

EWGLA 2015, Budapest, HUNGARY