Locating Temporary Shelter Areas after a Large-Scale Disaster

Firat Kılcı

Bahar Yetiș Kara, Burçin Bozkaya

Disasters in Turkey

Type of Disaster	\# of households destroyed	Percentage (\%)
Earthquake	495.000	79
Landslide	63.000	10
Flood	61.000	9
Rock Fall	26.500	4
Avalanche	5.154	1
	650.654	100

Source: Ozmen et al. (2005)

Shelter Areas

After a disaster, homeless people stay in shelter areas.

- Sphere Project:
- Started in 1997 by several humanitarian organizations and IFRC
- Defines standards and some quality measurements for humanitarian operations.

SPHERE HUMANITARIAN

 STANDARD FOR SHELTERS

Shelter Areas

After a disaster, homeless people stay in shelter areas.

- For temporary settlements,
- Must plan settlement areas, access to those areas and routes to public facilities. These areas should be far from threat zones.
- Must provide enough supply of tents, shelter kits, construction kits and cash.
- Must provide adequate space to everyone to live
- Must provide necessary utilities to achieve best thermal conditions.

Turkish Red Crescent

- In Turkey, TRC is the main authority for identifying the shelter area locations.
- First they identify the candidate locations.
- Each candidate location has a weight w.r.t. some criteria
- Sort w.r.t. these weights and open facilities one by one until there is enough space for all the population.

Turkish Red Crescent

- Criteria:
- Transportation of relief items
- Procurement of relief items
- Healthcare institutions
- Structure and type of the terrain
- Slope of the terrain
- Flora of the terrain
- Electrical infrastructure
- Sewage infrastructure
- Permission to use

Turkish Red Crescent

- No population - shelter area assignment
- No consideration of shelter area utilization
- Distances between population and shelter area is ignored

Problem Definition

- Develop a that decides on
- the locations of the shelter areas
- assignment of population points to shelter areas
- considers utilization of shelter areas
- considers distances between shelter areas and the affected population.

Mathematical Model

TRC Criteria:

Transportation of relief items
Procurement of relief items
Healthcare institutions
Structure and type of the terrain
Slope of the terrain
Flora of the terrain
Electrical infrastructure
Sewage infrastructure
Permission to use

Weight function

Data created using GIS

Mathematical Model

- Maximize the minimum weight of operating shelters.
- Accessibility:
- Minimize total distance from the shelter areas to nearest main roads and health facilities.
- Efficiency:
- Maximize the total utilization of open shelter areas.
- Balance:
- Minimize the maximum pairwise utilization difference of open shelter areas.

Mathematical Model

- Subject to;
- Assign each district (population point) to an area (shelter)
- Respect capacity of shelter areas
- Calculate utilization

Mathematical Model

The population needs to be converted into "demand"
demand $_{j}=$ population $_{j} \times$ percentAffected \times livingSpace
percentAffected: percentage of population that is assumed to live in the shelter areas
livingSpace: assigned living space per person population j : the number of people living in district j

Mathematical Model

Sets

- I: set of candidate locations
- J: set of districts

Mathematical Model

Parameters

$w_{i}:$ weight of candidate location i, between 0 and 1.
$d_{1}^{\text {health }}$: distance b / w candidate location i and nearest health bldg.
$d_{i}^{r o a d}$: distance between candidate location i and nearest main road
demand $_{j}$: total demand of the area j (in m^{2})
cap_{i} : capacity of candidate location $i\left(\right.$ in $\left.\mathrm{m}^{2}\right)$
$d_{i s t_{i j}}$: distance between candidate location i and demand point j
utilSpace: assigned space for utilities per shelter area

Mathematical Model

- Decision Variables
$x_{i}: \begin{cases}1, \text { if candidate location } i & \text { is chosen } \\ 0, & \text { otherwise }\end{cases}$
$y_{i j}:\left\{\begin{array}{l}1, \text { if district } j \text { is assigned to location } i \\ 0, \\ \text { otherwise }\end{array}\right.$
$u_{i}:$ Utilization of the candidate location i .

Mathematical Model

Constraints (Capacity and Assignment)

- Assign every district to a shelter area

$$
\sum_{i \in I} y_{i j}=1 \quad \forall j \in J
$$

Constraints (Capacity and Assignment)

- Capacity constraints of shelter areas

$$
\begin{gathered}
\sum_{j \in J} y_{i j} * \text { Demand }_{j}+u t i l S p a c e * x_{i} \leq \operatorname{cap}_{i} * x_{i} \\
\forall i \in I
\end{gathered}
$$

Constraints (Utilization)

- Calculate the utilization of each shelter area,

$$
u_{i}=\frac{\sum_{j \in J} y_{i j} * \text { Demand }_{j}}{\operatorname{Cap}_{i}} \quad \forall i \in I
$$

Objective Functions

- Maximize the minimum weight of operating areas.

Maximize

$\left(\min \left(w_{i} * x_{i}+\left(1-x_{i}\right) \mid i \in I\right)\right) \quad(\mathrm{Ol})$

Objective Functions

- Minimize total distance from the shelter areas to nearest main roads and health facilities.
- minimize $\sum_{i \in I} d_{\text {health }}^{i} * x_{i}$ (O2)
- minimize $\sum_{i \in I} d_{r o a d}^{i} * x_{i} \quad$ (O3)

Objective Functions

- Maximize the total utilization of open shelter areas.
maximize $\sum_{i \in I} u_{i}$
(O4)

Objective Functions

- Minimize the total pair wise utilization difference of open shelter areas.

minimize $\sum_{i \in I} \sum_{k \in I}\left|u_{i}-u_{\boldsymbol{k}}\right| * x_{i} * x_{k}$ $k<i$

(O5)

Objective Functions

- Minimize the total distance

$\operatorname{minimize} \sum_{i \in I} \sum_{j \in J} d i s t_{i j} * x_{i j}$
 (O6)

Selecting the Best Objective

- Select one objective function for the model
- Introduce other five objectives as constraints
- Choose Ol as primary objective

(O2) and (O3)

- Minimize total distance from the shelter areas to nearest main roads and health facilities.
- Define new parameters
- DistHealth : max allowed shelter area - health institutions distance
- DistRoad : max allowed shelter area - mainroad distance
- Add Constraints:

$$
\begin{gathered}
d_{i}^{\text {health } * x_{i} \leq \text { DistHealth } \quad \forall i \in I} \\
d_{i}^{\text {road } * x_{i}} \leq \text { DistRoad } \quad \forall i \in I
\end{gathered}
$$

- Maximize the total utilization of open shelter areas.
- Define a threshold value, and force utilization to be greater than it.
- β : Threshold value for minimum utilization of open shelter areas
- Add constraint:

$$
u_{i} \geq \beta * x_{i} \quad i \in I
$$

(O5)

- Minimize the total pair wise utilization difference of open shelter areas.
- Define a threshold value similarly
- α : Threshold value for pair wise utilization difference of candidate shelter areas
- Add constraint:

$$
\left|u_{i}-u_{j}\right| * x_{i} * x_{j} \leq \alpha \quad \forall i, j \in I
$$

(O5)

$$
\left|u_{i}-u_{j}\right| * x_{i} * x_{j} \leq \alpha \quad \forall i \in I, j \in I
$$

- How to linearize?
I. Multiplication of many variables

2. Absolute value linearization
(O5)

$$
\left|u_{i}-u_{j}\right| * x_{i} * x_{j} \leq \alpha \quad \forall i \in I, j \in I
$$

- How to linearize?
I. Multiplication of many variables

$$
\text { If } x_{i}=1 \text { and } x_{j}=1 \Rightarrow\left|u_{i}-u_{j}\right| \leq \alpha
$$

(O5)

$$
\left|u_{i}-u_{j}\right| * x_{i} * x_{j} \leq \alpha \quad \forall i \in I, j \in I
$$

- How to linearize?
I. Multiplication of many variables

$$
\begin{gathered}
\text { If } x_{i}=1 \text { and } x_{j}=1 \Rightarrow\left|u_{i}-u_{j}\right| \leq \alpha \\
\left|u_{i}-u_{j}\right| \leq \alpha+\left(1-x_{i}\right)+\left(1-x_{j}\right) \forall i, j \in I
\end{gathered}
$$

(O5)

$$
\left|u_{i}-u_{j}\right| * x_{i} * x_{j} \leq \alpha \quad \forall i \in I, j \in I
$$

- How to linearize?

2. Absolute value linearization

$$
\begin{gathered}
u_{i}-u_{j} \leq \alpha+\left(1-x_{i}\right)+\left(1-x_{j}\right) \forall i, j \in I \\
u_{i}-u_{j} \geq-\alpha-\left(1-x_{i}\right)-\left(1-x_{j}\right) \forall i, j \in I
\end{gathered}
$$

(O6)

- Minimize the total distance.
- Add a constraint that assigns every district to nearest open shelter area
- "Closest assignment" constraints.
- Define:
- distSorted ${ }_{i j}$: $\mathrm{it}^{\text {th }}$ closest candidate location index to district j
- Add constraints:

```
\(y_{\text {distSorted }(1, j), j}=x_{\text {distSorted }(1, j)}\)
\(y_{\text {distSorted }(i, j), j} \geq x_{\text {distSorted }(i, j)}-\sum_{k=1}^{i-1} x_{\text {distSorted }(k, j)}\)
```

$$
\forall j \in J
$$

(OI) Revisited

- $\max \left(\min \left(w_{i} * x_{i}+\left(1-x_{i}\right) \mid i \in I\right)\right)$
- Must linearize and define an upper bound
- New decision variable: minWeight
- Objective function: maximize minWeight
- Define upper bound with a constraint
- Add:

MinWeight $\leq x_{i} * w_{i}+\left(1-x_{i}\right) \quad \forall i \in I$

Mathematical Model

Max MinWeight

s.t.

$$
\begin{array}{ll}
\text { MinWeight } \leq W_{i} X_{i}+\left(1-X_{i}\right) & \forall i \\
\sum_{j \in J} \text { dem }_{j} y_{i j}+\text { utilspace }_{i} X_{i} \leq \operatorname{Cap}_{i} X_{i} & \forall i \\
\sum_{i \in I} y_{i j}=1 & \forall j
\end{array}
$$

$$
u_{i}=\frac{\sum_{j \in J} y_{i j} * \text { Demand }_{j}}{\text { Cap }_{i}}
$$

$\forall i$

$$
u_{i} \geq \beta X_{i}
$$

$\forall i$

$$
u_{i}-u_{j} \leq \alpha+\left(1-X_{i}\right)+\left(1-X_{j}\right)
$$

$\forall i, j$

$$
u_{i}-u_{j} \geq-\alpha-\left(1-X_{i}\right)-\left(1-X_{j}\right)
$$

$\forall i, j$

$$
\begin{array}{ll}
\text { Max MinWeight } & \begin{array}{c}
\text { minimum weight of } \\
\text { operating shelter } \\
\text { areas }
\end{array} \\
\text { s.t. } & \forall i \\
\sum_{j \in J} \text { dem }_{j} y_{i j}+\text { utilspace }_{i} X_{i} \leq \text { Cap }_{i} X_{i} & \forall i \\
\sum_{i \in I} y_{i j}=1 & \forall j \\
& \\
u_{i}=\frac{\sum_{j \in J} y_{i j} * \text { Demand }_{j}}{\text { Cap }_{i}} & \forall i \\
u_{i} \geq \beta X_{i} & \forall i \\
u_{i}-u_{j} \leq \alpha+\left(1-X_{i}\right)+\left(1-X_{j}\right) & \forall i, j \\
u_{i}-u_{j} \geq-\alpha-\left(1-X_{i}\right)-\left(1-X_{j}\right) & \forall i, j
\end{array}
$$

Maximize the

Max MinWeight

s.t.

MinWeight $\leq W_{i} X_{i}+\left(1-X_{i}\right)$
$\sum_{j \in J} \operatorname{dem}_{j} y_{i j}+$ utilspace $_{i} X_{\imath} \leq \operatorname{Cap}_{i} X_{i}$
$\sum_{i \in I} y_{i j}=1$

$\forall i$

Capacity
$\forall i$
$\forall j$

$$
u_{i}=\frac{\sum_{j \in J} y_{i j} * \text { Demand }_{j}}{\text { Cap }_{i}}
$$

$u_{i} \geq \beta X_{i}$
$u_{i}-u_{j} \leq \alpha+\left(1-X_{i}\right)+\left(1-X_{j}\right)$
$u_{i}-u_{j} \geq-\alpha-\left(1-X_{i}\right)-\left(1-X_{j}\right)$
$\forall i$
$\forall i$
$\forall i, j$
$\forall i, j$

Max MinWeight

s.t.

$$
\text { MinWeight } \leq W_{i} X_{i}+\left(1-X_{i}\right) \quad \forall i
$$

$\sum \operatorname{dem}_{j} y_{i j}+$ utilspace $_{i} X_{\imath} \leq \operatorname{Cap}_{i} X_{i}$
$\sum_{i \in I} y_{i j}=1$

$$
\begin{array}{cl}
u_{i}=\frac{\sum_{j \in J} y_{i j} \text { Demand }_{j}}{\text { Cap }_{i}} & \forall i \\
u_{i} \geq \beta X_{i} & \forall i \\
u_{i}-u_{j} \leq \alpha+\left(1-X_{i}\right)+\left(1-X_{j}\right) & \forall i, j \\
u_{i}-u_{j} \geq-\alpha-\left(1-X_{i}\right)-\left(1-X_{j}\right) & \forall i, j
\end{array}
$$

$\forall i \quad$ Assign every district

Max MinWeight

s.t.

$$
\begin{array}{ll}
\text { MinWeight } \leq W_{i} X_{i}+\left(1-X_{i}\right) & \forall i \\
\sum_{j \in J} \text { dem }_{j} y_{i j}+\text { utillspace }_{i} X_{\imath} \leq \operatorname{Cap}_{i} X_{i} & \forall i \\
\sum_{i \in I} y_{i j}=1 & \forall j
\end{array}
$$

$$
u_{i}=\frac{\sum_{j \in J} y_{i j} * \text { Demand }_{j}}{\text { Cap }_{i}}
$$

$$
u_{i} \geq \beta X_{i}
$$

$$
u_{i}-u_{j} \leq \alpha+\left(1-X_{i}\right)+\left(1-X_{j}\right)
$$

$$
u_{i}-u_{j} \geq-\alpha-\left(1-X_{i}\right)-\left(1-X_{j}\right)
$$

$\forall i$
$\forall i, j$
$\forall i, j$

Max MinWeight

s.t.

$$
\begin{array}{ll}
\text { MinWeight } \leq W_{i} X_{i}+\left(1-X_{i}\right) & \forall i \\
\sum_{j \in J} \text { dem }_{j} y_{i j}+\text { utilspace }_{i} X_{i} \leq \operatorname{Cap}_{i} X_{i} & \forall i \\
\sum_{i \in I} y_{i j}=1 & \forall j
\end{array}
$$

$$
u_{i}=\frac{\sum_{j \in J} y_{i j} * \text { Demand }_{j}}{\text { Cap }_{i}}
$$

$$
u_{i} \geq \beta X_{i}
$$

$$
u_{i}-u_{j} \leq \alpha+\left(1-X_{i}\right)+\left(1-X_{j}\right)
$$

$\forall i, j$

$$
u_{i}-u_{j} \geq-\alpha-\left(1-X_{i}\right)-\left(1-X_{j}\right)
$$

$\forall i, j$

Max MinWeight

s.t.

$$
\begin{array}{ll}
\text { MinWeight } \leq W_{i} X_{i}+\left(1-X_{i}\right) & \forall i \\
\sum_{j \in J} \text { dem }_{j} y_{i j}+\text { utilspace }_{i} X_{i} \leq \operatorname{Cap}_{i} X_{i} & \forall i \\
\sum_{i \in I} y_{i j}=1 & \forall j
\end{array}
$$

$$
u_{i}=\frac{\sum_{j \in J} y_{i j} * \text { Demand }_{j}}{\text { Cap }_{i}}
$$

$$
u_{i} \geq \beta X_{i}
$$

$$
u_{i}-u_{j} \leq \alpha+\left(1-X_{i}\right)+\left(1-X_{j}\right)
$$

$$
u_{i}-u_{j} \geq-\alpha-\left(1-X_{i}\right)-\left(1-X_{j}\right)
$$

Distance

$d_{i}^{\text {health }} X_{i} \leq$ DistHealth $d_{i}^{\text {road }} X_{i} \leq$ DistRoad

$$
\begin{array}{ll}
y_{\text {Sorted }(1, j), j}=X_{\text {Sorted }(1, j)} & \forall j \\
y_{\text {Sorted }(i, j), j} \geq X_{\text {Sorted }(i, j)}-\sum_{\mathrm{k}=1}^{\mathrm{i}-1} X_{\text {Sorred }(k, j)} & \forall j
\end{array}
$$

$$
\begin{array}{ll}
X_{i} \in\{0,1\} & \forall i \\
y_{i j} \in\{0,1\} & \forall i, j \\
u_{i} \geq 0 & \forall i
\end{array}
$$

$$
\begin{array}{cc}
d_{i}^{\text {health }} X_{i} \leq \text { DistHealth } & \forall i \\
d_{i}^{\text {road }} X_{i} \leq \text { DistRoad } & \forall i \\
y_{\text {Sorted }(1, j), j}=X_{\text {Sorted }(1, j)} & \forall j \\
y_{\text {Sorred }(i, j), j} \geq X_{\text {Sorred }(i, j)}-\sum_{\mathrm{k}=1}^{\mathrm{i}-1} X_{\text {Sorted }(k, j)} & \forall j \\
X_{i} \in\{0,1\} & \forall i \\
y_{i j} \in\{0,1\} & \forall i, j \\
u_{i} \geq 0 & \forall i
\end{array}
$$

$$
\begin{array}{cl}
d_{i}^{\text {health }} X_{i} \leq \text { DistHealth } & \forall i \\
d_{i}^{\text {road }} X_{i} \leq \text { DistRoad } & \forall i \\
y_{\text {Sorted }(1, j), j}=X_{\text {Sorred }(1, j)} & \forall j \\
y_{\text {Sorted }(i, j), j} \geq X_{\text {Sorted }(i, j)}-\sum_{\mathrm{k}=1}^{\mathrm{i}-1} X_{\text {Sorred }(k, j)} & \forall j \\
X_{i} \in\{0,1\} & \forall i \\
y_{i j} \in\{0,1\} & \forall i, j \\
u_{i} \geq 0 & \forall i
\end{array}
$$

Computational Study

- Model is tested on a sample data on Kartal, Istanbul.
- 25 potential shelter areas
- 20 districts

Results

Generated 3000 instances by varying DistHealth, DistRoad, 8 , and α.

Solved using Gurobi integrated with DSS
The objective value decreases as 8 is increased and α, DistHealth and DistRoad are decreased.

This is expected as these changes tighten the feasible set.

Decision Support System

- An ArcGIS extension that utilizes Gurobi and developed in C\#
- The user
- Can solve the mathematical model
- Edit the solution
- Save the current solution
- Compare up to 4 solutions
- Visualize the current solution
- Graph the shelter area utilizations
- See the lists of assignments

Decision Support System

- 5 layers needed:
- Location of districts with population data in its data table
- Location of candidate shelter areas with has weight and capacity data in its data table
- A layer that contains the hospitals
- A layer that contains the main road junctions
- A "Network Dataset" that contains the road network

Decision Support System

Decision Support System

Decision Support System

Conclusion

- In this study, a mathematical model to capture the requirements of TRC is formulated
- To implement the mathematical model, a decision support system via GIS is developed
- Tested with TRC personnel.

