Fair Allocation of In-Kind Donations in Post-Disaster Phase

Zehranaz Varol

Bilkent University

National level

Regional level

Capacitated mobile PoDs (# is limited with a budget)

Capacitated mobile PoDs (# is limited with a budget)

Coverage radius

Capacitated mobile PoDs (# is limited with a budget)

Inventory decisions for shelter sites

Capacitated mobile PoDs (# is limited with a budget)

Inventory decisions for shelter sites

A cost function based on waiting time and shortage

Capacitated mobile PoDs (# is limited with a budget)

A cost function based on waiting time and shortage

Min-max approach

Capacitated mobile PoDs (# is limited with a budget)

Coverage radius

Inventory decisions for shelter sites

A cost function based on waiting time and shortage

Min-max approach

Multi-period structure

0

Problem assumptions

- A finite planning horizon is considered with a set of time periods
- A consumable non-perishable relief item with recurring demand is distributed
- Demand nodes are temporary settlements for disaster-victims
- Supply nodes are potential sites for mobile points of distribution (POD)
- Demand and supply are known
- Only demand nodes can store items
- Number of open depots is limited

- ne periods g demand is
- -victims stribution

$t \in T$: Time periods $j \in J$: Demand nodes $i \in I$: Possible depot locations

Parameters

$j \in J$: Demand nodes

- *d_{jt}*: Demand of node *j* in period *t*
- α_j : Weight associated with demand node *j*

Parameters

$i \in I$: Possible depot locations

- *s*_t: Supply amount in period *t*
- c_i: Capacity of depot i
- p_t : Maximum number of depots that can be opened in period t

Parameters

- ℓ_{ij} : Distance between of demand node *j* and possible depot location *i*
- γ: Coverage radius for demand nodes

•
$$a_{ij} = \begin{cases} 1, & \text{If } \ell_{ij} \leq \gamma \\ 0, & \text{Otherwise} \end{cases}$$

•
$$y_{it} = \begin{cases} 1, & \text{If depot } i \text{ is opened in period } t \\ 0, & \text{Otherwise} \end{cases}$$

• x_{ijt} = Amount assigned to demand node *j* from depot *i* in period *t*

- v_{jt} = Inventory at demand node *j* at the end of period *t*
- u_{jt} = Shortage at demand node *j* at the end of period *t*

f period *t* [:] period *t*

Deprivation cost

Aims to increase equity among a set of entities

- A method to quantify human suffering
- Deprived amounts and deprivation times
- The deprivation cost at a demand node is equal to the aggregation of individual costs

Deprivation cost

Periods	1	2	3	
Shortage (u _{jn})	1	1	1	

Deprivation cost

•
$$w_{jt} = \begin{cases} 1, & \text{If } u_{jt} > 0 \\ 0, & \text{Otherwise} \end{cases}$$

• z_{jt} = Deprivation cost at demand node *j* at the end of period *t*

How to calculate deprivation cost?

Periods	1	2	3	4
Shortage	15	30	10	0
(u _{jt})				
Deprivation	15	15 +30	15 + <mark>30</mark> + 10	0
Cost (z _{jt})				

How to calculate deprivation cost?

Periods	1	2	3	4
Shortage	15	30	10	0
(u _{jt})				
Deprivation	15	15 +30	15 + <mark>30</mark> + 10	0
Cost (z _{jt})				

$$z_{jt} = egin{cases} z_{j,t-1} + u_{jt}, & ext{if } w_{jt} = 1, \ 0, & ext{otherwise} \end{cases} egin{array}{c} j \in \mathcal{O}, & ext{otherwise} \end{array}$$

 $\in J, t \in T$

How to calculate deprivation cost?

Periods	1	2	3	4
Shortage	15	30	10	0
(<i>u_{jt}</i>)				
Deprivation	15	15 +30	15 + <mark>30</mark> + 10	0
Cost (z _{jt})				

$$egin{aligned} & z_{j,t-1} + u_{jt}, & ext{if } w_{jt} = 1, \ & 0, & ext{otherwise} \end{aligned} egin{aligned} & f \in \ & 0, & ext{otherwise} \end{aligned}$$

$$z_{jt} \geq z_{j,t-1} + u_{jt} - M(1 - w_{jt})$$

 $\in J, t \in T$

Objective function

minimize

 $\max_{j\in J} \left\{ \alpha_j \sum_{t\in T} z_{jt} \right\}$

(1)

Minimize the maximum deprivation cost among the shelter sites

Mathematical model

Τ	(4)
<i>I</i> , <i>t</i> ∈ <i>T</i>	(5)
Τ	(6)
$I, j \in J, t \in T$ $J, t \in T$	(7) (8)
$J, t \in T$ $Jt \in T$	(9) (10)
<i>J</i> , <i>t</i> ∈ <i>T</i>	(11)

Mathematical model

<i>J</i> , <i>t</i> ∈ <i>T</i>	(12)
J	(13)
J	(14)
J	(15)
<i>I</i> , <i>t</i> ∈ <i>T</i>	(16)
<i>J</i> , <i>t</i> ∈ <i>T</i>	(17)
$I, j \in J, t \in T$	(18)
<i>J</i> , <i>t</i> ∈ <i>T</i>	(19)

A case study: Kartal district of Istanbul

$$|J| = 37, |I| = 6, |T| = 7$$

Value of mobilization

Static PoDs vs. dynamic PoDs

10% decrease in the objective function value

A sophisticated method to encourage equity during humanitarian operations

Amount distributed & timing of distributions

Mobile supply units

