Handling Volunteer Convergence from an OR Perspective: Volunteer Based Team Formation 08.05.2025 Egehan Uğraş Zehranaz Dönmez Varol **Bahar Y. Kara**

What is SAR?

Operational Steps of SAR

Rescue

Demobilisation

Sectorization and Debris Marking

Figure 1: Worksite sectorisation [1]

Figure 2: Debris marking [1]

Categorization of SAR Teams

USAR Bileşeni	Görevler	Tavsiye Edilen Kadro Tahsisi	Tavsiye Edilen Sayı (Toplam 40)
Yönetim	Komuta	Ekip Lideri	1
	Koordinasyon	Ekip Lideri Yardımcısı	1
	Planlama/Takip	Planlama Yetkilisi	1
	İrtibat/Medya/Raporlama	İrtibat Yetkilisi	1
	Değerlendirme/Analiz	Yapı Mühendisi	1
	Emniyet ve Güvenlik	Güvenlik Yetkilisi	1
	RDC/OSOCC/UCC	Koordinasyon Yetkilisi	2
Arama	Teknik Arama	Teknik Arama Uzmanı	2
	Köpekle Arama	Köpek Eğiticisi	2
	Tehlikeli Madde Değerlendirmesi	Tehlikeli Madde Uzmanı	2
Kurtarma	Kırma ve Geçit Açma; kesme; iksa; teknik halat	Kurtarma Ekibi Yöneticisi ve Kurtarma Teknisyenleri	14 (1 Ekip Lideri ve 6 Kurtarma Görevlisinden oluşan 2 ekip)
	Kaldırma ve Hareket Ettirme	Ağır Sapanla Bağlama Uzmanı	2
Tibbi	Tıbbi Ekip Yönetimi: Tıbbi ekibin	Tip Doktoru	1
	koordinasyon ve idaresi. Yerel sağlık altyapısı ile birleşme Ekibin (köpekler dahil) ve karşılaşılan afetzedelerin tedavisinin yapılması	Doktor, Sağlık Görevlisi, Hemşire	3
Lojistik	BoO	Lojistik Ekibi Yöneticisi	1
	Su temini	Ulaştırma Uzmanı	1
	Gida temini	Lojistikçi	1
	Ulaştırma kapasitesi ve yakıt temini	Üs Yöneticisi	2
	Haberleşme	Haberleşme Uzmanı	1

Medium SAR Team

Light SAR Team

Figure 3: AFAD Team Classification

USAR Bileşeni	Görevler	Tavsiye Edilen Kadro Tahsisi	Tavsiye Edilen Sayı (Toplam 59)
Yönetim	Komuta	Ekip Lideri	1
	Koordinasyon	Ekip Lideri Yardımcısı	1
	Planlama	Planlama Yetkilisi	1
	Irtibat/Takip	Irtibat Yetkilisi	1
	Medya/Raporlama	Irtibat Yetkilisi Yardımcısı	1
	Değerlendirme/Analiz	Yapı Mühendisi	1
	Emniyet ve Güvenlik	Güvenlik Yetkilisi	1
	RDC/OSOCC/UCC	Koordinasyon Yetkilisi	2
	Teknik Arama	Teknik Arama Uzmanı	2
Arama	Köpekle Arama	Köpek Eğiticisi	4
	Tehlikeli Madde Değerlendirme	Tehlikeli Madde Uzmanı	2
Kurtarma	Kırma ve Geçit Açma: kesme; iksa; teknik halat	Kurtarma Ekibi Yöneticisi ve Kurtarma Teknisyenleri	28 (1 Ekip Lideri ve 6 Kurtarma Görevlisinden oluşan 4 ekip)
	Kaldırma ve Hareket Ettirme	Ağır Sapanla Bağlama Uzmanı	2
	Ekip Tedavisi (Personel ve Köpekler) Hasta Tedavisi	Tip Doktoru	2
Tibbi	Ropekiel) Husta Tedavisi	Sağlık Görevlisi/Hemşire	4
(accession)	BoO	Lojistik Ekibi Yöneticisi	1
Lojistik	Su temini	Ulaştırma Uzmanı	1
	Gida temini	Lojistikçi	1
	Ulaştırma kapasitesi ve yakıt temini	Üs Yöneticisi	2
	Haberleşme	Haberleşme Uzmanı	1

Heavy SAR Team

Reasons and Benefits of Sectorization

	OPERATION	CODE
Ligl	Disaster Area Exploration	ASR-1
Ligl	Sectoral Review	ASR-2
Lig	Rapid Search and Rescue	ASR-3
N	Full Search and Rescue	ASR-4
	Full Search and Rescue and Recovery	ASR-5

Table 1: ASR Stages and Conducting Teams [2]

Who can conduct?

- ht, Medium, Heavy SAR teams
- ht, Medium, Heavy SAR teams
- ht, Medium, Heavy SAR teams
- ledium and Heavy SAR teams

Heavy SAR teams

Responsible Organizations

National Level C* AFAD

LEMA

analysis of processes defined by responsible organizations prepared flowcharts for ideal scenarios

Figure 4: INSARAG SAR Flow

Figure 5: AFAD SAR Flow

Figure 6: INSARAG SAR Flow

Figure 7: Involved Actors for Steps

National S&R Teams **International S&R Teams Local S&R Authorities**

Figure 8: OR Problems

Routing Scheduling of Operation Form DEMOBILISATION

Usual Characteristics of SAR Problems

L	Incertaintie	es
	Demand	
	Locations	
	Demand Amounts	
	Damage	
	Severity/Type	
	\/alunataan	

Volunteer Competency

Supply Capacity

Limitations

Equipment

Transportation/ Logistics

Information Gaps

Coordination Challenges

Environmental Conditions

Team Safety

Time

Locating critical coordination centers and camp sites

Uncertainties

Demand Locations

Demand Amounts

Damage Severity/Type

Volunteer Competency

Supply Capacity

Limitations

Equipment

Transportation/ Logistics

Information Gaps

Coordination Challenges

Environmental Conditions

Team Safety

Time

Wide Area Exploration for damage assessment

Uncertainties

Demand Locations

Demand Amounts

Damage Severity/Type

Volunteer Competency

Supply Capacity

Limitations

Equipment

Transportation/ Logistics

Information Gaps

Coordination Challenges

Environmental Conditions

Team Safety

Time

Formating SAR teams

Uncertainties

Demand Locations

Demand Amounts

Damage Severity/Type

Volunteer Competency

Supply Capacity

Limitations

Equipment

Transportation/ Logistics

Information Gaps

Coordination Challenges

Environmental Conditions

Team Safety

Time

Assigning SAR teams to debris

Uncertainties

Demand Locations

Demand Amounts

Damage Severity/Type

Volunteer Competency

Supply Capacity

Limitations

Equipment

Transportation/ Logistics

Information Gaps

Coordination Challenges

Environmental Conditions

Team Safety

Time

the allocation of multiple individuals that match a required set of skills as a group must be chosen to maximise one or several objectives [3]

Jones & Barber (2007) [4]	team formation
Hashemipour et al. (2018) [5]	analyzing different metrics
Okita et.al (2018) [6]	capacity Building of Inte
Ge et.al (2021) [7]	building an Interdisciplinar
Danışan & Eren (2023) [8]	assignment of 200 search and rescue p their competencies, volunteers are no perform are

Table 2: Related work with team formation problem in SAR context

in a large-scale environment

while formating a first-response team

ernational Search and Rescue Teams

y Team for Disaster Response Research

ersonnel to medium and heavy teams according to t considered and the roles that the personnel can determined in advance.

Team Formation Problem

USAR Bileşeni	Görevler	Tavsiye Edilen Kadro Tahsisi	Tavsiye Edilen Sayı (Toplam 40)
Yönetim	Komuta	Ekip Lideri	1
	Koordinasyon	Ekip Lideri Yardımcısı	1
	Planlama/Takip	Planlama Yetkilisi	1
	İrtibat/Medya/Raporlama	İrtibat Yetkilisi	1
	Değerlendirme/Analiz	Yapı Mühendisi	1
	Emniyet ve Güvenlik	Güvenlik Yetkilisi	1
	RDC/OSOCC/UCC	Koordinasyon Yetkilisi	2
Arama	Teknik Arama	Teknik Arama Uzmanı	2
	Köpekle Arama	Köpek Eğiticisi	2
	Tehlikeli Madde Değerlendirmesi	Tehlikeli Madde Uzmanı	2
Kurtarma	Kırma ve Geçit Açma; kesme; iksa; teknik	Kurtarma Ekibi Yöneticisi	14 (1 Ekip Lideri
	halat	ve Kurtarma Teknisyenleri	ve 6 Kurtarma
		E S V	Görevlisinden
			oluşan 2 ekip)
	Kaldırma ve Hareket Ettirme	Ağır Sapanla Bağlama	2
		Uzmanı	
Tibbi	Tıbbi Ekip Yönetimi: Tıbbi ekibin	Tip Doktoru	1
	koordinasyon ve idaresi. Yerel sağlık	Doktor, Sağlık Görevlisi,	3
	altyapısı ile birleşme	Hemşire	
	Ekibin (köpekler dahil) ve karşılaşılan		
	afetzedelerin tedavisinin yapılması		
Lojistik	BoO	Lojistik Ekibi Yöneticisi	1
	Su temini	Ulaştırma Uzmanı	1
	Gida temini	Lojistikçi	1
	Ulaştırma kapasitesi ve yakıt temini	Us Yöneticisi	2
	Haberleşme	Haberleşme Uzmanı	1

Figure 9: Medium Team Requirements

different qualification requirements

- dynamic environment
- integration of international teams to national teams

Team Formation by Volunteers

influx of uncoordinated volunteers to disaster sites

volunteer convergence [9]

Pros	Cons
Accounts for 75 % of search and rescue	Overload transport and communication networks
Source of information to official responders	Use resources (food, shelter, protective equipment)
Source of information to official responders	Safety liability

Table 3: Pros and cons of volunteer convergence [10]

Figure 10: Volunteer Convergence after Kahramanmaraş Earthquakes [11]

Team Formation by Volunteers

major logistical, operational challenges

"the disaster within the disaster" [10]

Figure 10: AFAD called volunteers around 10 PM, Feb. 6 [12]

Figure 11: Volunteer crowd in airport [13]

Kıymetli AFAD Gönüllümüz, Çağrımıza vermiş olduğunuz güçlü destek için çok teşekkür ederiz.

lyi ki varsınız, minnettarız. Şu an havalimanlarımızda deprem bölgesine gitmek için bekleyen AFAD Gönüllülerimizin nakillerinde yoğunluk

yaşanmaktadır.

Havalimanına gitmek için yola çıkmadıysanız, lütfen evinizde bekleyin.

Yoğunluk azaldıktan sonra sizleri bilgilendireceğiz.

İlgi, sabır ve anlayışınıza çok teşekkür ederiz. B002

Figure 12: Appeal for volunteers not to come around 2 AM, Feb. 7 [14]

Team Formation by Volunteers

Barsky et al. (2007) [15]	integration of volu
Mayorga et al. (2017) [16]	assignment of volunteers to tasks
Abualkhair et al. (2018) [17]	examines the assignment of volunteers to ca
Paret et al. (2020) [18]	assigning volunteers to tasks in aid distribun

Table 4: Volunteer convergence literature

assigning volunteers based on their competencies to SAR teams by considering accreditation systems

unteers to FEMA's USAR system

that do not require any special skills or training.

o tasks in aid centers, it is assumed that each volunteer an do every job

tion centers so the skills or training of the volunteers are not considered.

Role	Light Team	Medium Team
Medical	1	3
Rescue	10	18
Logistics	4	6
Transmitter	2	6
Canine	0	2
Hazmat	0	2
Doctor	0	1
Total	17	38

Table 5: Number of staff required for teams

Light teams -> ability to move fast operational capability of ASR3 level

Medium teams -> move slower operational capability of ASR4 level

Medium⁻ teams

teams

could be utilized to determine missings while completing medium teams

intermediate level teams, have more operational capability then light teams, less capability than medium

Sets:

- N=Set of volunteers
- R=Set of roles (1:Medical, 2:Rescue, 3: Logistics, 4: Transmitter, 5:Canine, 6:Hazmat, 7:Doctor)
- T=Set of team categories (1=Light, 2=Medium, 3=Medium⁻)
- L=Set of team leaders

Sets:

- N=Set of volunteers
- R=Set of roles (1:Medical, 2:Rescue, 3: Logistics, 4: Transmitter, 5:Canine, 6:Hazmat, 7:Doctor)
- T=Set of team categories (1=Light, 2=Medium, 3=Medium⁻)
- L=Set of team leaders

Parameters:

- N=number of volunteers
- L=number of leaders

Sets:

- N=Set of volunteers
- R=Set of roles (1:Medical, 2:Rescue, 3: Logistics, 4: Transmitter, 5:Canine, 6:Hazmat, 7:Doctor)
- T=Set of team categories (1=Light, 2=Medium, 3=Medium⁻)
- L=Set of team leaders

Parameters:

- N=number of volunteers
- L=number of leaders
- $a_t = \text{Efficiency of team category t}$

Sets:

- N=Set of volunteers
- R=Set of roles (1:Medical, 2:Rescue, 3: Logistics, 4: Transmitter, 5:Canine, 6:Hazmat, 7:Doctor)
- T=Set of team categories (1=Light, 2=Medium, 3=Medium⁻)
- L=Set of team leaders

Parameters:

- N=number of volunteers
- L=number of leaders
- $a_t = \text{Efficiency of team category t}$

•
$$b_{ir} = \begin{cases} 1 & \text{if volunteer } i \text{ is suitable for role } r \\ 0 & \text{otherwise} \end{cases}$$

Sets:

- N=Set of volunteers
- R=Set of roles (1:Medical, 2:Rescue, 3: Logistics, 4: Transmitter, 5:Canine, 6:Hazmat, 7:Doctor)
- T=Set of team categories (1=Light, 2=Medium, 3=Medium⁻)
- L=Set of team leaders

Parameters:

- N=number of volunteers
- L=number of leaders
- $a_t = \text{Efficiency of team category t}$

•
$$b_{ir} = \begin{cases} 1 & \text{if volunteer } i \text{ is suitable for role } r \\ 0 & \text{otherwise} \end{cases}$$

• d_{tr} = Number of role r people team t needs (just for light and medium teams, i.e $t \in \{1, 2\}$)

Decision Variables:

Decision Variables:

• z_{rl} = Number of role r people assigned to team l

Decision Variables:

• z_{rl} = Number of role r people assigned to team l

•
$$x_{ilr} = \begin{cases} 1 & \text{if volunteer } i \text{ is assigned to team} \\ 0 & \text{otherwise} \end{cases}$$

n l in the role r

Decision Variables:

• z_{rl} = Number of role r people assigned to team l

•
$$x_{ilr} = \begin{cases} 1 & \text{if volunteer } i \text{ is assigned to team} \\ 0 & \text{otherwise} \end{cases}$$

• $y_{lt} = \begin{cases} 1 & \text{if leader } l \text{ formatted a team with team category } t \\ 0 & \text{otherwise} \end{cases}$

n l in the role r

Model:

maximize

$$\sum_l \sum_t a_t y_{lt}$$

(1) maximizing total efficiency of teams

Model:

maximize	$\sum_l \sum_t a_t y_{lt}$		(1) maximizin
subject to	$y_{lt} \ d_{tr} \leq z_{rl}$	$\forall r \in R, \forall l \in L \ and \ \forall t \in \{1,2\}$	(2) supplying

ng total efficiency of teams

staff demand of light and medium teams

Model:

maximize $\sum_{l} \sum_{t} a_{t} y_{lt}$ subject to $y_{lt} d_{tr} \leq z_{rl}$ $\forall r \in R, \forall l \in L and \forall t \in \{1, 2\}$ $\sum \sum x_{ilr} \le 1 \qquad \forall i \in N$

- (1) maximizing total efficiency of teams
- (2) supplying staff demand of light and medium teams (3) a volunteer can be assigned to at most one team

Model:

maximize $\sum_{l} \sum_{t} a_{t} y_{lt}$ $\forall r \in R, \forall l \in L \ and \ \forall t \in \{1, 2\}$ subject to $y_{lt} d_{tr} \leq z_{rl}$ $\sum_{l} \sum_{r} x_{ilr} \le 1$ $\forall i \in N$ $\sum y_{lt} \le 1$ $\forall l \in L$

- (1) maximizing total efficiency of teams
- (2) supplying staff demand of light and medium teams
- (3) a volunteer can be assigned to at most one team
- (4) a leader can be assigned to at most one team

Model:

maximize	$\sum_l \sum_t a_t y_{lt}$		(1) maximizing
subject to	$y_{lt} \; d_{tr} \leq z_{rl}$	$\forall r \in R, \forall l \in L \ and \ \forall t \in \{1,2\}$	(2) supplying
	$\sum_{l}\sum_{r}x_{ilr}\leq 1$	$\forall i \in N$	(3) a voluntee
	$\sum_t y_{lt} \leq 1$	$\forall l \in L$	(4) a leader ca
	$z_{rl} = \sum_i x_{ilr} b_{ir}$	$\forall l \in L, \forall r \in R$	(5) connecting

- g total efficiency of teams
- staff demand of light and medium teams
- er can be assigned to at most one team
- an be assigned to at most one team
- g volunteer, role and team assignments
Model:

maximizin	(1)	$\sum_t a_t y_{lt}$	$\sum_{l}\sum_{t} c$	maximize
supplying	$E L and \forall t \in \{1, 2\} $ (2)	$t_{tr} \leq z_{rl} \qquad \forall r \in R$	$y_{lt} \ d_{tr} \leq$	subject to
a voluntee	(3)	$\sum_{r} x_{ilr} \le 1 \qquad \qquad \forall i \in N$	$\sum_{l}\sum_{r} s$	
a leader ca	(4)	$\forall l \in L$ $\forall l \in L$	$\sum_t y_{lt} \leq$	
connecting	R (5)	$= \sum_{i} x_{ilr} b_{ir} \qquad \forall l \in L,$	$z_{rl} = \sum_i$	
number of s	L (6)	$_{3} \leq z_{rl} \qquad \forall r \in R$	$d_{1r}y_{l3} \leq$	
equal than	E L (7)	$\forall d_{2r} \qquad \forall r \in R$	$z_{rl} \leq d_{2r}$	

- g total efficiency of teams
- staff demand of light and medium teams
- er can be assigned to at most one team
- an be assigned to at most one team
- g volunteer, role and team assignments
- staff assigned to a medium⁻ team should be greater or a light team and less or equal than a medium team

Model:

maximize	$\sum_{l}\sum_{t}a_{t}y_{lt}$		(1)	maximizing
subject to	$y_{lt} \ d_{tr} \leq z_{rl}$	$\forall r \in R, \forall l \in L \ and \ \forall t \in \{1,2\}$	(2)	supplying
	$\sum_{l} \sum_{r} x_{ilr} \leq 1$	$\forall i \in N$	(3)	a voluntee
	$\sum_{t} y_{lt} \le 1$	$\forall l \in L$	(4)	a leader ca
	$z_{rl} = \sum_i x_{ilr} b_{ir}$	$\forall l \in L, \forall r \in R$	(5)	connecting
	$egin{aligned} & d_{1r}y_{l3} \leq z_{rl} \ & z_{rl} \leq d_{2r} \end{aligned}$	$ \begin{aligned} \forall r \in R, \forall l \in L \\ \forall r \in R, \forall l \in L \end{aligned} $	(6) (7)	number of s equal than a
	$\sum_t y_{lt} \ge x_{ilr}$	$\forall i \in N, \forall l \in L, \forall r \in R$	(8)	unless a lea that team

- g total efficiency of teams
- staff demand of light and medium teams
- er can be assigned to at most one team
- an be assigned to at most one team
- g volunteer, role and team assignments
- staff assigned to a medium⁻ team should be greater or a light team and less or equal than a medium team
- ader is assigned, do not assign any volunteer to

Model:

maximize	$\sum_{l}\sum_{t}a_{t}y_{lt}$		(1)	maximizing
subject to	$y_{lt} \; d_{tr} \leq z_{rl}$	$\forall r \in R, \forall l \in L \ and \ \forall t \in \{1,2\}$	(2)	supplying
	$\sum_{l} \sum_{r} x_{ilr} \le 1$	$\forall i \in N$	(3)	a voluntee
	$\sum_{t} y_{lt} \le 1$	$\forall l \in L$	(4)	a leader ca
	$z_{rl} = \sum_i x_{ilr} b_{ir}$	$\forall l \in L, \forall r \in R$	(5)	connecting
	$d_{1r}y_{l3} \leq z_{rl}$	$\forall r \in R, \forall l \in L$	(6)	number of s
	$z_{rl} \le d_{2r}$	$\forall r \in R, \forall l \in L$	(7)	equal than
	$\sum_t y_{lt} \geq x_{ilr}$	$\forall i \in N, \forall l \in L, \forall r \in R$	(8)	unless a lea that team
	$x_{ilr}, y_{lt} \in \{0,1\}$	orall i,l,r	(9)	domain con
	$z_{rl} \ge 0$	orall l,r	(10)	domain con

- g total efficiency of teams
- staff demand of light and medium teams
- er can be assigned to at most one team
- an be assigned to at most one team
- g volunteer, role and team assignments
- staff assigned to a medium⁻ team should be greater or a light team and less or equal than a medium team
- ader is assigned, do not assign any volunteer to
- straints
- straints

Small Scale Disaster Timeline

Small Scale Disaster Timeline

Case 1

few volunteers light teams needed to conduct ASR3 operations

Small Scale Disaster Timeline

Case 4 many volunteers few leaders light teams needed

	PARAMETERS					
Case			Number of	Number of		
Number	Scale	Time	Volunteers	Leaders	Skill set	Alpha Values
1	Small	First day	100	5	Random	(1000,100,500)
2	Small	Fifth day	100	5	Random	(100,1000,500)
3	Large	First day	1000	40	Most 0's	(1000,100,500)
4	Large	First day	1000	10	Most 0's	(1000,100,500)
5	Large	Second day	1000	40	Most 1's	(100,1000,500)
6	Large	Second day	1000	10	Most 1's	(100,1000,500)
7	Large	Third day	1000	40	Random	(100,500,1000)
8	Large	Fifth day	1000	40	Random	(100,500,1000)
9	Large	Fifth day	1000	40	Random	(1000,100,500)
10	Large	Tenth day	1000	40	Random	(100,1000,500)

		Averag	Average Number of Teams		Respon	se Time
	Case					
	Number	Light	Medium	Medium-	Average	Max
	1	5	0	0	0.04 sec	0.05 sec
	2	0	2	2	0.1 sec	0.14 sec
\star	3	20	0	0	2.87 sec	3.47 sec
	4	10	0	0	0.31 sec	0.33 sec
\star	5	0	15	25	43.34 sec	44.64 sec
	6	0	10	0	1.38 sec	1.98 sec
\star	7	0	0	40	2.54 sec	2.93 sec
	8	0	0	40	2.73 sec	2.99 sec
	9	40	0	0	2.7 sec	3.04 sec
	10	0	19	15	34.63 sec	39.87 sec

10 instances were solved for each case

Case 3

there are many volunteers with little experience light teams are required to conduct ASR3 level operations

Rescue (170)

Case 5

Team Type Distribution Volunteer Assignment Status **Role Distribution**

arrival of experienced (retired) rescuers or SAR teams medium teams are required to conduct ASR4 level operations

Case 5

Additional Staff Needed:					
Role	Existing Staff	Additional	Staff		
Medical	24				
Rescue	230				
Logistics	92				
Transmitter	46				
Canine	0				
Hazmat	0				
Doctor	0				

additional staff needed to complete medium⁻ teams to medium teams

Case 7

Team Type Distribution

Volunteer Assignment Status **Role Distribution**

medium⁻ teams are required to combine them with international teams

Case 7

Additional Staff Needed:						
Role	Existing Staff	Additional St				
Medical	40					
Rescue	400					
Logistics	160					
Transmitter	80					
Canine	0					
Hazmat	0					
Doctor	0					

additional staff needed to complete medium⁻ teams to medium teams

We work with volunteers, but assume that they perform perfectly. Can do they work as efficient as a professional SAR technician?

Also, let's assign formed teams to debris sites

Sets:

- N =Set of volunteers.
- R =Set of roles, where:

 $R = \{1 : Medical, 2 : Rescue, 3 : Logistics, 4 : Transmitter, 5 : Canine, 6 : Hazmat, 7 : Doctor\}$

• T =Set of team categories, where:

 $T = \{1 : \text{Light}, 2 : \text{Medium}, 3 : \text{Medium}^-\}$

- L =Set of team leaders.
- K =Set of team debris.

Sets:

- N =Set of volunteers.
- R =Set of roles, where:

 $R = \{1 : Medical, 2 : Rescue, 3 : Logistics, 4 : Transmitter, 5 : Canine, 6 : Hazmat, 7 : Doctor\}$

• T =Set of team categories, where:

 $T = \{1 : \text{Light}, 2 : \text{Medium}, 3 : \text{Medium}^-\}$

- L =Set of team leaders.
- K =Set of team debris.

Parameters:

- N=number of volunteers
- L=number of leaders
- $a_t = \text{Efficiency of team category t}$

Sets:

- N =Set of volunteers.
- R =Set of roles, where:

 $R = \{1 : Medical, 2 : Rescue, 3 : Logistics, 4 : Transmitter, 5 : Canine, 6 : Hazmat, 7 : Doctor\}$

• T =Set of team categories, where:

 $T = \{1 : \text{Light}, 2 : \text{Medium}, 3 : \text{Medium}^-\}$

- L =Set of team leaders.
- K =Set of team debris.

Parameters:

- N=number of volunteers
- L=number of leaders
- $a_t = \text{Efficiency of team category t}$
- b_{ir} is the work unit that volunteer *i* can meet when assigned to role *r* (proficiency level of volunteer i at role r) and $b_{ir} \in [0, 1]$.

Sets:

- N =Set of volunteers.
- R =Set of roles, where:

 $R = \{1 : Medical, 2 : Rescue, 3 : Logistics, 4 : Transmitter, 5 : Canine, 6 : Hazmat, 7 : Doctor\}$

• T =Set of team categories, where:

 $T = \{1 : \text{Light}, 2 : \text{Medium}, 3 : \text{Medium}^-\}$

- L =Set of team leaders.
- K =Set of team debris.

Parameters:

- N=number of volunteers
- L=number of leaders
- $a_t = \text{Efficiency of team category t}$
- b_{ir} is the work unit that volunteer *i* can meet when assigned to role *r* (proficiency level of volunteer i at role r) and $b_{ir} \in [0, 1]$.
- d_{tr} is the needed work unit for role r at team type t.

Sets:

- N =Set of volunteers.
- R =Set of roles, where:

 $R = \{1 : Medical, 2 : Rescue, 3 : Logistics, 4 : Transmitter, 5 : Canine, 6 : Hazmat, 7 : Doctor\}$

• T =Set of team categories, where:

 $T = \{1 : \text{Light}, 2 : \text{Medium}, 3 : \text{Medium}^-\}$

- L =Set of team leaders.
- K =Set of team debris.

Parameters:

- N=number of volunteers
- L=number of leaders
- $a_t = \text{Efficiency of team category t}$
- b_{ir} is the work unit that volunteer *i* can meet when assigned to role *r* (proficiency level of volunteer i at role r) and $b_{ir} \in [0, 1]$.
- d_{tr} is the needed work unit for role r at team type t.
- c_r is the criticality of role r and takes values:

 $c_r = \begin{cases} 1 & \text{for roles: Medical, Doctor, Rescue, and Canine} \\ 0 & \text{for roles: Transmitter, Logistics, and Hazmat} \end{cases}$

Sets:

- N =Set of volunteers.
- R =Set of roles, where:

 $R = \{1 : Medical, 2 : Rescue, 3 : Logistics, 4 : Transmitter, 5 : Canine, 6 : Hazmat, 7 : Doctor\}$

• T =Set of team categories, where:

 $T = \{1 : \text{Light}, 2 : \text{Medium}, 3 : \text{Medium}^-\}$

- L =Set of team leaders.
- K =Set of team debris.

Parameters:

•

- N=number of volunteers
- L=number of leaders
- $a_t = \text{Efficiency of team category t}$
- b_{ir} is the work unit that volunteer *i* can meet when assigned to role *r* (proficiency level of volunteer i at role r) and $b_{ir} \in [0, 1]$.
- d_{tr} is the needed work unit for role r at team type t.
- c_r is the criticality of role r and takes values:

 $c_r = \begin{cases} 1 & \text{for roles: Medical, Doctor, Rescue, and Canine} \\ 0 & \text{for roles: Transmitter, Logistics, and Hazmat} \end{cases}$

 $e_{kt} = \begin{cases} 1 & \text{if debris k is suitable for team type t} \\ 0 & \text{otherwise} \end{cases}$

Decision Variables:

• t_{rl} = Amount of work unit for role r assigned to team l.

Decision Variables:

•

• t_{rl} = Amount of work unit for role r assigned to team l.

$$x_{ilr} = \begin{cases} 1 & \text{if volunteer } i \text{ is assigned to team } l \text{ in} \\ 0 & \text{otherwise} \end{cases}$$

n the role r

Decision Variables:

•

•

• t_{rl} = Amount of work unit for role r assigned to team l.

 $x_{ilr} = \begin{cases} 1 & \text{if volunteer } i \text{ is assigned to team } l \text{ in the role } r \\ 0 & \text{otherwise} \end{cases}$ $y_{lt} = \begin{cases} 1 & \text{if leader } l \text{ formed a team with team category } t \\ 0 & \text{otherwise} \end{cases}$

Decision Variables:

• t_{rl} = Amount of work unit for role r assigned to team l.

• $x_{ilr} = \begin{cases} 1 & \text{if volunteer } i \text{ is assigned to team } l \text{ in the role } r \\ 0 & \text{otherwise} \end{cases}$ • $y_{lt} = \begin{cases} 1 & \text{if leader } l \text{ formed a team with team category } t \\ 0 & \text{otherwise} \end{cases}$ •

 $q_{lkt} = \begin{cases} 1 & \text{if team } l \text{ with category } t \text{ and this team is assigned to debris } k \\ 0 & \text{otherwise} \end{cases}$

 $\max \quad \sum_{l} \sum_{t} a_{t} y_{lt}$

(1) maximizing total efficiency of teams

s.t $y_{lt} d_{tr} \leq t_{rl}$

 $\forall r \in R, \forall l \in L \ and \ \forall t \in \{1, 2\}$

(1) maximizing total efficiency of teams

(2) supplying staff demand of light and medium teams

$$\max \sum_{l} \sum_{t} a_{t} y_{lt}$$

$$\text{s.t} \quad y_{lt} \ d_{tr} \leq t_{rl}$$

$$\sum_{l} \sum_{r} x_{ilr} \leq 1$$

$$(1) \quad \text{maximizing}$$

$$(2) \quad \text{supplying}$$

$$(3) \quad \text{a voluntee}$$

ng total efficiency of teams

staff demand of light and medium teams er can be assigned to at most one team

max	$\sum_{l}\sum_{t}a_{t}y_{lt}$		(1)	maximizin
s.t	$y_{lt} \ d_{tr} \le t_{rl}$	$\forall r \in R, \forall l \in L \text{ and } \forall t \in \{1, 2\}$	(2)	supplying
	$\sum_{l} \sum_{r} x_{ilr} \le 1$	$\forall i \in N$	(3)	a voluntee
	$\sum y_{lt} \leq 1$	$\forall l \in L$	(4)	a leader ca

ng total efficiency of teams

staff demand of light and medium teams er can be assigned to at most one team

an be assigned to at most one team

$$\begin{array}{lll} \max & \sum_{l} \sum_{t} a_{t} y_{lt} & (1) & \text{maximizing} \\ \text{s.t} & y_{lt} & d_{tr} \leq t_{rl} & \forall r \in R, \forall l \in L \text{ and } \forall t \in \{1, 2\} & (2) & \text{supplying } \\ & \sum_{l} \sum_{r} x_{ilr} \leq 1 & \forall i \in N & (3) & \text{a voluntee} \\ & \sum_{t} y_{lt} \leq 1 & \forall l \in L & (4) & \text{a leader call } \\ & t_{rl} = \sum_{i} x_{ilr} b_{ir} & \forall l \in L, \forall r \in R & (5) & \text{connecting} \end{array}$$

- g total efficiency of teams
- staff demand of light and medium teams er can be assigned to at most one team
- an be assigned to at most one team
- g volunteer, role and team assignments

maximizing	(1)	$\sum_{t} \sum_{t} a_t y_{lt}$	$\sum_l \sum_t a_t y_{lt}$	max
supplying a voluntee	(2) (3)	$\begin{array}{ll} \forall t \in R, \forall l \in L \ and \ \forall t \in \{1, 2\} \\ \sum x_{ilr} \leq 1 \\ \end{array} \qquad \qquad \forall i \in N \end{array}$	$y_{lt} d_{tr} \leq t_{rl}$ $\sum \sum x_{ilr} \leq$	s.t
a leader ca	(4)	$\sum_{t=1}^{r} y_{lt} \leq 1 \qquad \qquad \forall l \in L$	$\sum_{t}^{l} y_{lt}^{r} \leq 1$	
connecting	(5)	$\forall t = \sum_{i} x_{ilr} b_{ir}$ $\forall l \in L, \forall r \in R$	$t_{rl} = \sum_{i} x_{ilr} b$	
medium- st	(6)	$y_{l3} \leq t_{rl}$ $\forall r \in R, \forall l \in L$	$d_{1r}y_{l3} \leq t_{rl}$	

- g total efficiency of teams
- staff demand of light and medium teams er can be assigned to at most one team
- In be assigned to at most one team
- g volunteer, role and team assignments
- taff assignment
| maximizing | (1) | | $\sum_{l}\sum_{t}a_{t}y_{lt}$ | \max |
|-------------------------|------------|---|--|--------|
| supplying
a voluntee | (2)
(3) | $ \forall r \in R, \forall l \in L \ and \ \forall t \in \{1,2\} \\ \forall i \in N $ | $y_{lt} \ d_{tr} \leq t_{rl} \ \sum_{l} \sum_{r} x_{ilr} \leq 1$ | s.t |
| a leader ca | (4) | $\forall l \in L$ | $\sum_{t}^{l} y_{lt} \leq 1$ | |
| connecting | (5) | $\forall l \in L, \forall r \in R$ | $t_{rl} = \sum_{i} x_{ilr} b_{ir}$ | |
| medium- st | (6) | $\forall r \in R, \forall l \in L$ | $d_{1r}y_{l3} \le t_{rl}$ | |
| unless a lead | (7) | $\forall i \in N, \forall l \in L, \forall r \in R$ | $\sum_t y_{lt} \geq x_{ilr}$ | |

- g total efficiency of teams
- staff demand of light and medium teams er can be assigned to at most one team
- In be assigned to at most one team
- g volunteer, role and team assignments
- taff assignment
- ler is assigned, do not assign any volunteer to that team

maximizin	(1)		$\sum_l \sum_t a_t y_{lt}$	max
supplying a voluntee	(2) (3)	$ \forall r \in R, \forall l \in L \ and \ \forall t \in \{1,2\} \\ \forall i \in N $	$y_{lt} \; d_{tr} \leq t_{rl} \ \sum_l \sum_r x_{ilr} \leq 1$	$\mathrm{s.t}$
a leader ca	(4)	$\forall l \in L$	$\sum_t^l y_{lt} \leq 1$	
connectin	(5)	$\forall l \in L, \forall r \in R$	$t_{rl} = \sum_i x_{ilr} b_{ir}$	
medium- s	(6)	$\forall r \in R, \forall l \in L$	$d_{1r}y_{l3} \le t_{rl}$	
unless a lead	(7)	$\forall i \in N, \forall l \in L, \forall r \in R$	$\sum_t y_{lt} \ge x_{ilr}$	
ensuring r	(8)	$\forall i \in N, \forall l \in L, \forall r \in R$	$b_{ir} \ge 0.5 x_{ilr} c_r$	

- ng total efficiency of teams
- staff demand of light and medium teams er can be assigned to at most one team
- an be assigned to at most one team
- ng volunteer, role and team assignments
- staff assignment
- der is assigned, do not assign any volunteer to that team
- ole criticality

$\sum_{l}\sum_{t}a_{t}y_{lt}$		(1)	maximizin
$y_{lt} \ d_{tr} \leq t_{rl} \ \sum_{l} \sum_{r} x_{ilr} \leq 1$	$ \forall r \in R, \forall l \in L \ and \ \forall t \in \{1,2\} \\ \forall i \in N $	(2) (3)	supplying a voluntee
$\sum_{t}^{l} y_{lt} \leq 1$	$\forall l \in L$	(4)	a leader ca
$t_{rl} = \sum_{i} x_{ilr} b_{ir}$	$\forall l \in L, \forall r \in R$	(5)	connectin
$d_{1r}y_{l3} \le t_{rl}$	$\forall r \in R, \forall l \in L$	(6)	medium- s
$\sum_t y_{lt} \geq x_{ilr}$	$\forall i \in N, \forall l \in L, \forall r \in R$	(7)	unless a leac
$b_{ir} \ge 0.5 x_{ilr} c_r$	$\forall i \in N, \forall l \in L, \forall r \in R$	(8)	ensuring r
$\sum_{i} \sum_{r} x_{ilr} \le 59$	$\forall l \in L$	(9)	number of
	$egin{array}{l} \sum_{l}\sum_{t}a_{t}y_{lt}\ y_{lt}\ d_{tr} \leq t_{rl}\ \sum_{l}\sum_{r}x_{ilr} \leq 1\ \sum_{l}y_{lt} \leq 1\ t_{rl} = \sum_{t}y_{lt} \leq 1\ t_{rl} = \sum_{i}x_{ilr}b_{ir}\ d_{1r}y_{l3} \leq t_{rl}\ \sum_{t}y_{lt} \geq x_{ilr}\ b_{ir} \geq 0.5x_{ilr}c_{r}\ \sum_{i}\sum_{r}x_{ilr} \leq 59 \end{array}$	$\begin{split} &\sum_{l} \sum_{t} a_{t} y_{lt} \\ &y_{lt} \ d_{tr} \leq t_{rl} & \forall r \in R, \forall l \in L \ and \ \forall t \in \{1, 2\} \\ &\sum_{l} \sum_{r} x_{ilr} \leq 1 & \forall i \in N \\ &\sum_{l} y_{lt} \leq 1 & \forall l \in L \\ &t_{rl} = \sum_{i} x_{ilr} b_{ir} & \forall l \in L, \forall r \in R \\ &d_{1r} y_{l3} \leq t_{rl} & \forall r \in R, \forall l \in L \\ &\sum_{t} y_{lt} \geq x_{ilr} & \forall i \in N, \forall l \in L, \forall r \in R \\ &b_{ir} \geq 0.5 x_{ilr} c_{r} & \forall i \in N, \forall l \in L, \forall r \in R \\ &\sum_{i} \sum_{r} x_{ilr} \leq 59 & \forall l \in L \end{split}$	$\begin{split} &\sum_{l} \sum_{t} a_{t} y_{lt} & (1) \\ &y_{lt} \ d_{tr} \leq t_{rl} & \forall r \in R, \forall l \in L \ and \ \forall t \in \{1, 2\} & (2) \\ &\sum_{l} \sum_{r} x_{ilr} \leq 1 & \forall i \in N & (3) \\ &\sum_{l} y_{lt} \leq 1 & \forall l \in L & (4) \\ &t_{rl} = \sum_{i} x_{ilr} b_{ir} & \forall l \in L, \forall r \in R & (5) \\ &d_{1r} y_{l3} \leq t_{rl} & \forall r \in R, \forall l \in L & (6) \\ &\sum_{t} y_{lt} \geq x_{ilr} & \forall i \in N, \forall l \in L, \forall r \in R & (7) \\ &b_{ir} \geq 0.5 x_{ilr} c_{r} & \forall i \in N, \forall l \in L, \forall r \in R & (8) \\ &\sum_{i} \sum_{r} x_{ilr} \leq 59 & \forall l \in L & (9) \end{split}$

- ig total efficiency of teams
- staff demand of light and medium teams er can be assigned to at most one team
- an be assigned to at most one team
- ig volunteer, role and team assignments
- staff assignment
- der is assigned, do not assign any volunteer to that team
- ole criticality
- f staff in a team should be limited

maximizin	(1)		$\sum_{l}\sum_{t}a_{t}y_{lt}$	max
supplying a voluntee	(2) (3)	$ \forall r \in R, \forall l \in L \ and \ \forall t \in \{1,2\} \\ \forall i \in N $	$y_{lt} d_{tr} \leq t_{rl}$ $\sum \sum x_{ilr} \leq 1$	s.t
a leader ca	(4)	$\forall l \in L$	$\sum_{t}^{l} y_{lt} \leq 1$	
connectin	(5)	$\forall l \in L, \forall r \in R$	$t_{rl} = \sum_i x_{ilr} b_{ir}$	
medium- s	(6)	$\forall r \in R, \forall l \in L$	$d_{1r}y_{l3} \leq t_{rl}$	
unless a leac	(7)	$\forall i \in N, \forall l \in L, \forall r \in R$	$\sum_t y_{lt} \geq x_{ilr}$	
ensuring r	(8)	$\forall i \in N, \forall l \in L, \forall r \in R$	$b_{ir} \ge 0.5 x_{ilr} c_r$	
number of	(9)	$\forall l \in L$	$\sum_{i} \sum_{r} x_{ilr} \le 59$	
to assign a	(10)	$\forall l \in L, \forall t \in T$	$\sum_k q_{lkt} \leq y_{lt}$	

- g total efficiency of teams
- staff demand of light and medium teams er can be assigned to at most one team
- an be assigned to at most one team
- g volunteer, role and team assignments
- taff assignment
- der is assigned, do not assign any volunteer to that team
- ole criticality
- staff in a team should be limited
- team to the debris site, it should be formed

maximizin	(1)	t	$\sum_l \sum_t a_t y_{lt}$	\max
supplying a voluntee	(2) (3)	$\begin{array}{ll} \forall r \in R, \forall l \in L ~and ~\forall t \in \{1,2\} \\ \leq 1 & \forall i \in N \end{array}$	$y_{lt} \ d_{tr} \leq t_{rl} \ \sum_{l} \sum_{r} x_{ilr} \leq 1$	s.t
a leader ca	(4)	$\forall l \in L$	$\sum_{t} y_{lt} \leq 1$	
connectin	(5)	$\forall l \in L, \forall r \in R$	$t_{rl} = \sum_{i} x_{ilr} b_{ir}$	
medium- s	(6)	$\forall r \in R, \forall l \in L$	$d_{1r}y_{l3} \le t_{rl}$	
unless a lead	(7)	$\forall i \in N, \forall l \in L, \forall r \in R$	$\sum_t y_{lt} \geq x_{ilr}$	
ensuring r	(8)	$\forall r \in N, \forall l \in L, \forall r \in R$	$b_{ir} \ge 0.5 x_{ilr} c_r$	
number of	(9)	$\leq 59 \qquad \forall l \in L$	$\sum_{i} \sum_{r} x_{ilr} \le 59$	
to assign a	(10)	$\forall l \in L, \forall t \in T$	$\sum_k q_{lkt} \le y_{lt}$	
each debri	(11)	≥ 1 $\forall k \in K$	$\sum_l \sum_t q_{lkt} \ge 1$	

- ig total efficiency of teams
- staff demand of light and medium teams er can be assigned to at most one team
- an be assigned to at most one team
- ig volunteer, role and team assignments
- staff assignment
- der is assigned, do not assign any volunteer to that team
- ole criticality
- f staff in a team should be limited
- a team to the debris site, it should be formed
- is site should be covered at least once

maximizin	(1)		$\sum_{l}\sum_{t}a_{t}y_{lt}$	max
supplying a voluntee	(2) (3)	$ \begin{aligned} \forall r \in R, \forall l \in L ~and ~\forall t \in \{1,2\} \\ \forall i \in N \end{aligned} $	$y_{lt} \ d_{tr} \leq t_{rl} \ \sum_{l} \sum_{r} x_{ilr} \leq 1$	$\mathrm{s.t}$
a leader ca	(4)	$\forall l \in L$	$\sum_{t}^{l} y_{lt} \leq 1$	
connectin	(5)	$\forall l \in L, \forall r \in R$	$t_{rl} = \sum_i x_{ilr} b_{ir}$	
medium- s	(6)	$\forall r \in R, \forall l \in L$	$d_{1r}y_{l3} \le t_{rl}$	
unless a lead	(7)	$\forall i \in N, \forall l \in L, \forall r \in R$	$\sum_t y_{lt} \geq x_{ilr}$	
ensuring r	(8)	$\forall i \in N, \forall l \in L, \forall r \in R$	$b_{ir} \ge 0.5 x_{ilr} c_r$	
number of	(9)	$\forall l \in L$	$\sum_{i} \sum_{r} x_{ilr} \le 59$	
to assign a	(10)	$\forall l \in L, \forall t \in T$	$\sum_{k} q_{lkt} \le y_{lt}$	
each debr	(11)	$\forall k \in K$	$\sum_{l}\sum_{t}q_{lkt} \ge 1$	
team type	(12)	$\forall l \in L, \forall t \in T, \forall k \in K$	$q_{lkt} \le e_{kt}$	

- ig total efficiency of teams
- staff demand of light and medium teams er can be assigned to at most one team
- an be assigned to at most one team
- ig volunteer, role and team assignments
- staff assignment
- der is assigned, do not assign any volunteer to that team
- ole criticality
- f staff in a team should be limited
- a team to the debris site, it should be formed
- is site should be covered at least once
- should be suitable for debris site

maximizin	(1)		$\sum_{l}\sum_{t}a_{t}y_{lt}$	\max
supplying	(2)	$\forall r \in R, \forall l \in L \ and \ \forall t \in \{1,2\}$	$y_{lt} d_{tr} \leq t_{rl}$	s.t
a voluntee	(3)	$orall i \in N$	$\sum_{l}\sum_{r}x_{ilr}\leq 1$	
a leader ca	(4)	$\forall l \in L$	$\sum_t y_{lt} \leq 1$	
connectin	(5)	$\forall l \in L, \forall r \in R$	$t_{rl} = \sum_i x_{ilr} b_{ir}$	
medium- s	(6)	$\forall r \in R, \forall l \in L$	$d_{1r}y_{l3} \le t_{rl}$	
unless a lead	(7)	$\forall i \in N, \forall l \in L, \forall r \in R$	$\sum_t y_{lt} \geq x_{ilr}$	
ensuring r	(8)	$\forall i \in N, \forall l \in L, \forall r \in R$	$b_{ir} \ge 0.5 x_{ilr} c_r$	
number of	(9)	$\forall l \in L$	$\sum_{i}\sum_{r}x_{ilr}\leq 59$	
to assign a	(10)	$\forall l \in L, \forall t \in T$	$\sum_k q_{lkt} \leq y_{lt}$	
each debri	(11)	$\forall k \in K$	$\sum_{l} \sum_{t} q_{lkt} \ge 1$	
team type	(12)	$\forall l \in L, \forall t \in T, \forall k \in K$	$q_{lkt} \le e_{kt}$	
domain co	(13)	$\forall l \in L, \forall t \in T, \forall k \in K, \forall i \in N,$	$x_{ilr}, y_{lt}, q_{lkt} \in \{0,1\}$	
domain co	(14)	$\forall l \in L, \forall r \in R$	$t_{rl} \ge 0$	

- ig total efficiency of teams
- staff demand of light and medium teams er can be assigned to at most one team
- an be assigned to at most one team
- ig volunteer, role and team assignments
- staff assignment
- der is assigned, do not assign any volunteer to that team
- ole criticality
- f staff in a team should be limited
- a team to the debris site, it should be formed
- is site should be covered at least once
- should be suitable for debris site onstraints onstraints

K=5 (# of debris)

Medium

Medium

K=5 (# of debris)

Medium-

Assigned Volunteer Numbers

Medical -	0	2	0	2	5	0	4	2	4	5	Medical -	0.00	1.75	0.00	1.41	3.04	0.00	3.11	1.94	3.38	3.50
Rescue -	0	14	0	13	25	0	24	12	25	25	Rescue -	0.00	10.02	0.00	10.10	18.00	0.00	18.20	10.11	18.16	18.12
Logistics -	0	7	0	7	9	0	9	б	10	8	Logistics -	0.00	4.52	0.00	4.00	6.17	0.00	6.24	4.04	6.14	6.19
원 Transmitter -	0	3	0	3	8	0	7	3	9	9	<u>ଥି</u> Transmitter -	0.00	2.16	0.00	2.38	6.28	0.00	6.32	2.13	6.17	6.42
Canine -	0	0	0	0	3	0	3	0	3	3	Canine -	0.00	0.00	0.00	0.00	2.54	0.00	2.42	0.00	2.13	2.39
Hazmat -	0	0	0	0	3	0	3	0	3	3	Hazmat -	0.00	0.00	0.00	0.00	2.38	0.00	2.52	0.00	2.23	2.11
Doctor -	0	0	0	0	2	0	2	0	2	2	Doctor -	0.00	0.00	0.00	0.00	1.53	0.00	1.94	0.00	1.25	1.46
	Leader 1 (None)	Leader 2 (Medium^-)	Leader 3 (None)	Leader 4 (Light)	Leader 5 (Medium)	Leader 6 (None)	Leader 7 (Medium)	Leader 8 (Medium^-)	Leader 9 (Medium)	Leader 10 (Medium)		Leader 1 (None) -	Leader 2 (2) -	Leader 3 (None) -	Leader 4 (0) -	Leader 5 (1) -	Leader 6 (None) -	Leader 7 (1) -	Leader 8 (2) -	Leader 9 (1) -	Leader 10 (1) -

 $\sum_{i} \sum_{r} x_{ilr} \le 59$

 $c_r = \begin{cases} 1 & \text{for roles Medical, Rescue, Canine and Doctor} \\ 0 & \text{for roles Transmitter, Logistics and Hazmat} \end{cases}$

Total Proficiency in Teams

Debris assignments

Number of missing staff

Team	Debris	Team Type	Medium^– Team Staff Summary: Total Medium^– teams formed: 2				
Team2	Debris3	Medium^-	Role	Assigned Staff	Needed to Upgrade to Medium		
Team4	Debris0	Light	Madical		2		
Team5	Debris1	Medium	Medical	4	2		
Team7	Debris4	Medium	Logistics	20	10		
Team8	Debris3	Medium^-	Transmitter	6	6		
Team9	Debris4	Medium	Canine	0	4		
Team10	Debris2	Medium	Hazmat	0	4		
			Doctor	0	2		

Table 6: Table of debris assignments

Table 7: Table of medium- team details

Computation Time 5.64 sec

Up to now

Volunteer Convergence

Up to now

Volunteer Convergence

Team Formation

Up to now

Volunteer Convergence

Team Formation

Debris Assignment